Olean Air and Climate Protection	n Software©	11/14/02 4:1	7:32pm 5 W R B C D _ 🗆 🗙
<u>File S</u> ettings <u>H</u> elp			
Community <u>A</u> nalysis	Community <u>M</u> easures	Government A <u>n</u> alysis	Government M <u>e</u> asures
		STAPPA/ALA	APCO and ICLEI's
		Clean	Air and
	Clin	nate Pro	tection
			oftware
	State and	d Territorial Air Pollution Pro Association of Local Air	ogram Administrators and Pollution Control Officials
	In the second	ternational Council for Loca	al Environmental Initiatives

Released May 2003

STAPPA/ALAPCO

Clean Air and Climate Protection Software Overview

* * * On-Line Training Session* * *

October 5, 2005

Jim Yienger and Ryan Bell ICLEI – CCP

The Cities for Climate Protection[®] Campaign

CCP is an international initiative bringing together more than 550 local governments to reduce emissions of greenhouse gases (GHGs) and improve air quality within their communities.

- 168 cities and counties in the US participate.
- Representing over 48+ million people
- 19 percent of U.S. GHG emissions

Cumulative local actions can have a positive impact on global climate change.

Clean Air and Climate Protection Software

Project History

- ICLEI-CCP dedicated to GHG mitigation
- STAPPA/ALAPCO members are air pollution control officials around the country
- CACP Software allows users to design strategies to reduce <u>both</u> traditional (criteria) air pollutants and GHGs
- EPA provided funding to include energy and state utility officials in 2005

Key Premises

- A healthy atmosphere cannot be achieved without the active engagement of all levels of government
- Emission reduction strategies bring multiple benefits and complement other objectives:
 - environmental improvement– public health
 - economic development– enhanced livability
- Emission sources and mitigation opportunities vary from region to region STATE and LOCAL action plans are necessary

State and Local Government's Impact Global Warming and Air Quality

State and Local policies affect all the major sources of global warming pollution

Solid Waste Management

Energy Codes, Energy Use, and Electrical Generation

Transportation and Planning

The Importance of Quantification

- Establish a firm baseline against which future action can be evaluated
- Compare the impact of alternatives, before implementation
- Develop analytical evidence to secure political and community support for actions
- Demonstrate and monitor progress towards achieving emission reduction goals
- Facilitate inter-jurisdictional comparisons and information exchanges
- Illustrate the critical role state and local agencies play in reducing emissions

The Software

What is the Clean Air & Climate Protection Software?

- A harmonized tool for quantifying emissions of GHGs and criteria air pollutants from *combustion*, *energy use and waste disposal*
- Assesses the effectiveness of existing and proposed emission reduction and control strategies
- Important policy planning tool
 - Compare the impact of different measures
 - Scenario building,
 - Emissions reduction planning
- Takes a flexible, reproducible, standardized, integrated approach to tracking emissions

What is Tracked?

- Greenhouse Gases
 - Carbon Dioxide (CO₂)
 - Methane (CH_4)
 - Nitrous Oxide (N₂O)

Reported in carbon dioxide equivalencies (eCO₂)

- Criteria Air Pollutants
 - $-NO_X$
 - $-SO_X$
 - CO
 - Volatile Organic
 Compounds (VOC)
 - Particulate Matter (PM10)
- "Indicators" standardize results for ease of comparisons
 - per capita, per household, per unit of floor area, etc.

Capability of the CACP Software

Stand-alone functionality or use modules together to create an Emissions Reduction Plan

- Create an emissions inventory
- Set a target for emissions reduction
- Forecast predicted emissions in future years under a "business-as-usual" scenario (i.e. the target year)
- Quantify the impact of reduction measures on emissions, energy use and cost
- Create custom reports
- Track changes over time and progress towards meeting targets

Organization of the Software (Main Divisions)

The software takes a sector based approach to account for all activities taking place within the jurisdiction.

🚱 Clean Air and Climate Protection Software®								
<u>File S</u> ettings <u>H</u> elp								
Community <u>A</u> nalysis	Community <u>M</u> easures	Government A <u>n</u> alysis	Government M <u>e</u> asures					

–Community: The emission and reduction from the jurisdiction as a whole.

-Government: The emissions and reductions associated with the government's own operations. *Analysis:* Creates an inventory of all emission sources.

-*Measures:* Allows you to quantify all existing or proposed emission reduction activities.

Organization of the Software (Sectors)

- Community
 - Residential
 - Commercial
 - Industrial
 - Transportation
 - Waste
 - Other

- Government
 - Buildings
 - Vehicle Fleet
 - Employee Commute
 - Water / Sewage
 - Waste
 - Streetlights
 - Other

Organization of the Software (Individual Records)

- Within each sector, data is entered into individual records
 - There is no limit to the number of records created
 - Data can be as aggregated as you would like
 - To avoid double counting, make sure that each record contains a discrete data set
- Using this sectoral approach to emissions quantification helps identify which sectors and operations are generating the most emissions and thus the greatest opportunities for reductions.

Analysis (Inventory) Parameters

- By calculating emissions on an "end use" basis, the software is designed to allow users to create demand side management strategies
- An assessment is made of all emissions that the jurisdiction is either:
 - Directly Generating...
 - Transportation Fuels
 - Gas Heating
 - Indirectly Responsible For...
 - Upstream electricity generation
 - Landfilling of waste

Analysis Data Requirements

- Activity data (e.g., fuel or electricity used, vehicle miles traveled (VMT), etc.)
- Waste generated, disposal method, and efficiency of emissions capture

-OR -

• Direct entry of absolute emissions levels (e.g., for a state that is using the EPA's State Inventory Tool)

-Optional Information -

- Indicators
 - employees, floor space, etc
- Cost information (Government Module Only)

Sample Inventory Data Input Screen

Clean Air and Climate Protection File Year Record <u>R</u> eport <u>S</u> ettings	n <mark>Software©</mark> Assistants <u>H</u> elp			_	
Community <u>A</u> nalysis	Community <u>M</u> easures	Government	A <u>n</u> alysis	Government M <u>e</u> asure	s
Community Analysis for Year 20 Residential Commercial Indus Name of Residential Building or Group Test Group Record Costrols Insert Select Report Assistants Categories Indicators Forecast Builder Accessor Tabs	Delete Delete Light Fuel Oil Name Fuel Coefficients Notes Regarding Resid Enter notes here	her	Sector Tabs Units (Wh) ons) IS gal) housand cu ft) IS gal) housand cu ft) cords) MMBtu) (Wh) Data	Energy Use 100,000,000 0 0 0 0 0 0 0 0 0 0 0 0	
Energy Consumption	(MMBtu) Equivalent CO ₂ Production	(tons) 74,958	NOx Production	(lbs) 296,170	SC F 111

Emissions Reduction Measures

- Quantifies the emission reductions from existing and proposed actions.
- Calculates the energy and cost savings associated with these activities.
- Calculates simple payback periods
- Compares the emissions reductions quantified to what is needed to reach the reduction target.

Type of Measures

- Residential/Commercial/Industrial, Buildings, Streetlights, Water / Sewage Sectors:
 - Energy efficiency measures
 - Change in energy source or fuel type
- Transportation, Vehicle Fleet, & Employee Commute Sectors:
 - Change in vehicle type, mode, occupancy, fuel used, and miles traveled
- Waste Sector
 - Waste reduction, recycling and composting measures
 - Changes in disposal technologies

Emissions Reduction Measures Data Needs

- General Information
 - Fuel, technology, or waste type affected
 - Before and after data
 - Implementation year
- Optional Information
 - Energy cost
 - Ramp-in schedule
 - Cost of implementation

Sample Data Input Screen for Energy Reduction Measures

🚱 Government Measures [Target Year 2010]	×
Buildings Vehicle Fleet Employee Commute Streetlights Water/Sewage Waste Oth	ner
Measure Type	Record Controls
Energy Efficiency: Lamp and Ballast	Inser <u>t S</u> elect <u>D</u> elete
Measure Name	
Tombstone Efficient Street Light Program	
Measure Description, Notes and Assumptions E × p a n d Retrofit the city's streetlights with efficient lamps, and replace existing traffic signals with LEDs	<u>Report</u> <u>Report</u> <u>Calculator</u>
Affected Energy Source	Location Implementation Data Coefficients
Image: Specific Technologies Image: Specific Technologies Image: Specific Technologies	Year Implemented 2003 Implementation Cost (\$) 500,000
Equivalent CO2Reduction (tons) Savings (\$) NO: 1,103 220,000 1	× Reduction (lbs) S 2,141
	1/1

Generic Fuel technologies can be used, or...

...specific technologies can be selected, if known

Creating an Emissions Reduction Plan

What Is a Emissions Reduction Plan?

- Base Year Emissions Inventory
- Emissions Reduction Target
 - % reduction from the base year emission level
 - By a target year
- Forecasted emissions levels in the target year under a "business-as-usual" scenario
- Quantified measures to reach the target

The Software Performs these Calculations for You

The Action Plan

Emission Factors / Coefficients

The Brains Behind the Software

Emission Factors / Coefficients

(energy use) X (coefficient) = emissions

- The CACP Software contains thousands of default coefficients
- Coefficients and algorithms created by
 - Tellus Institute, Torrie Smith Associates, ICLEI
 - U.S. Environmental Protection Agency
 - U.S. Department of Transportation
 - U.S. Department of Energy

Electricity Emission Factors Based upon energy end use

•Select the appropriate electricity region (NERC region) for where your operations are located. Each NERC region has a different electricity supply profile – and thus a different emissions profile

- •Option to select grid average or grid marginal
- •Can also override default electricity factors if have more precise information about electricity being used.

NERC Electricity Regions

Example of the Emission Factors Database for Electricity Emissions

Emissions Factors for Fuels

- CO₂ emissions from direct fuel combustion is only dependent on fuel type (not combustion technology).
 - Derived from the IPCC and the EPA
- Non-CO₂ greenhouse gases and criteria air pollutants are influenced by the combustion technology used.
 - In the analysis the emission factors are based on average technologies for each sector
 - In the measures, users can choose between emission factors for the
 - Average technology used in that sector
 - An emission factor for a specific fuel, combustion and control technologies being used
 - Based on Tellus Institute research, and upon AP-42 (*a database of emission factors maintained by EPA*)
 - Over 1500 combinations fuels and technologies are included

Example of the Emission Factors Database for Non-CO₂ Emissions from Directly Combusted Fuels

Coefficient Set Na	me Fue Pro	el and access	Coal Arbracite Arbracite AFBC: Bubbling Bed AFBC: Circulating Bed Cogeneration Cyclone Furnace Hand-fired Verfeed Stoker (Travelling Grate) Pulverized Coal: Dry Bottom (Tangent Pulverized Coal: Dry Bottom (Wall Fire			
Add Coefficient Set	Restore Defaults		Dverfeed Sto	oker (Trave	elling Grate)
Add Coefficient Set	Restore Defaults tuminous Emissions Unit	Per Fuel Unit	Dverfeed Sto	oker (Trave	elling Grate) S0x
Add Coefficient Set	Restore Defaults tuminous Emissions Unit (lbs)	Per Fuel Unit (MMBtu)	Overfeed Sto N20 0.002	oker (Trave CH4 0.002	elling Grate) 50x 4.38
Add Coefficient Set	tuminous Emissions Unit (Ibs) (Ibs)	Per Fuel Unit (MMBtu) (MMBtu)	Dverfeed Sto 0.002 0.002	2ed Coal: Dr oker (Trave CH4 0.002 0.002	elling Grate) SOx 4.38 4.38
Add Coefficient Set	Restore Defaults tuminous (lbs) (lbs) (lbs) (lbs)	Per Fuel Unit (MMBtu) (MMBtu) (MMBtu)	Dverfeed Sto N20 0.002 0.002 0.002	oker (Trave CH4 0.002 0.002 0.002	elling Grate NOx 0.288 0.288 0.288) SOx 4.38 4.38 4.38
Add Coefficient Set Efault Control Technology UNCONTROLLED Baghouse Ilectrostatic precipitator .ow NOx burners (LNB)	Restore Defaults tuminous (lbs) (lbs) (lbs) (lbs) (lbs)	Per Fuel Unit (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu)	Dverfeed Sto N20 0.002 0.002 0.002 0.002	CH4 0.002 0.002 0.002 0.002	elling Grate NOx 0.288 0.288 0.288 0.288 0.159) SOx 4.38 4.38 4.38 4.38 4.38
Add Coefficient Set Efault Control Technology UNCONTROLLED aghouse lectrostatic precipitator ow NOx burners (LNB) ow NOx burners with overfire air (LNB+OFA)	Restore Defaults tuminous tuminous (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs)	Per Fuel Unit (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu)	Dverfeed Sto N20 0.002 0.002 0.002 0.002 0.002 0.002	CH4 0.002 0.002 0.002 0.002 0.002 0.002	elling Grate NOx 0.288 0.288 0.288 0.288 0.159 0.144) SOx 4.38 4.38 4.38 4.38 4.38 4.38
efault Delete Coefficient Set Efault Bi Control Technology UNCONTROLLED aghouse lectrostatic precipitator ow NOx burners (LNB) ow NOx burners with overfire air (LNB+OFA) ow Sulfur Coal	Restore Defaults tuminous (lbs) (lbs	Per Fuel Unit (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu)	N20 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Oker (Trave CH4 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	elling Grate NOx 0.288 0.288 0.288 0.288 0.159 0.144 0.386) SOx 4.38 4.38 4.38 4.38 4.38 4.38 0.55

Waste Emission Factors

Two methodologies for calculating waste sector emissions

- The "Methane Commitment Method" applies all future emissions impacts of waste disposed of in the base or target year to the year in question
 - The Analysis emission factors include: methane generation, on-site sequestration, and the methane
 - The Measures emissions factors include methane generation and sequestration as well as: forest sequestration, upstream energy, and non-energy upstream emissions
 - These emissions factors come from the EPA's WARM Model
- The "Waste in Place" calculator quantifies the emissions generated by a landfill in the year open in the software
 - Data requirements: Year of landfill opening and closing and the methane recovery factor.

Example of the Emission Factors Database applied in the Waste Sector

Waste Coefficie	ents											×
	SetName 🔺					Add	d Coefficient Set					
USA Default Manage modify, them.				sets: choose add, and dele	e, ete		te Coefficient Se	Click here to Analysis or coefficient s	o view either Measures ets			
Choose Waste Disposal Practice												
Disposal Method	Reduction	Recycling	Com	post C	ontrolled Ir	ncineration	Mana	ged Landfill	Open Burning	Open Dum	D Uncollecte	d
Waste Ty	уре	Emission	is Unit	Was	te Unit	Methane	Se	equestration at Site	Forest Sequestration	Upstream Energy	Upstream Non-energy	
Aluminum		(tonnes)	Ţ	(tonnes)			0	0	0	7.677	2.393	
Cardboard		(tonnes)		(tonnes)		1.2	234	-0.906	0	0.956	0.003	
Food Waste		(tonnes)		(tonnes)		0.7	769	-0.088	0	0	0	
Glass Was	ste Type	(tonnes)	Choose	• Units]		0	0	0	0.419	0.141	
Mixed MSVV		(tonnes) L		(tonnes)		0.6	357	-0.402	0	0	0	
Mixed Recyclables		(tonnes)		(tonnes)		1.0)49	-0.813	0	1.374	0.099	
MSW		(tonnes)		(tonnes)		0.3	382	-0.836	9	0	0	
Paper - Household		(tonnes)		(tonnes)		1.2	247	-0.955		1.508	0.006	
Copy Row	Copy Row Paste Row Coefficient Sets A through E											
										~		

Cance

Output and Reports

Reports, summarize the emission reductions and savings from all measures in the emissions reduction plan

Remember: an analysis is only as good as the data entered!!!

Although some assumptions will need to be made, it is important to fully document them and use only the best available information **Measures Summary Reports:**

Show greenhouse gas and energy use reductions and costs savings by sector, and...

22/07/02

Page 1

Sample Community

Community Greenhouse Gas Emissions Reductions in 2010

Target Year Measures Summary

Measures Summary	Equiv CO ₂ (tons)	Equiv CO ₂ (%)	Energy (million Btu)	Energy Cost Savings (\$)
Residential Sector	60,270	51.1	436,102	7,650,000
Commercial Sector	7,257	6.2	22,526	660,000
Industrial Sector	19,883	16.9	34,130	2,000,000
Transportation Sector	30,473	25.8	355,070	4,240,394
Total	117,884	100.0	847 ,827	14,550,394

Measures Summary Reports: ...also show air pollutant

reductions by Sector

22/07/02

Page 1

Sample Community

Community Criteria Air Pollutant Reductions in 2010 Target Year Measures Summary

Measures Summary	NOx	SOx	CO	VOC	PM10
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Residential Sector	185,462	351,706	23,992	4,033	9,945
Commercial Sector	23,531	61,537	1,870	208	1,472
Industrial Sector	65,571	186,248	4,186	315	4,285
Transportation Sector	200,592	9,397	1,937,610	204,885	4,173
 Total	475,155	608,889	1,967,659	209,441	19,875

Climate Action Plan Summary Report:

Sample Community

Community Greenhouse Gas Emissions Reductions in 2010 Target Year Measures Summary Report

Measures Summary	Equiv CO ₂ (tonnes)	Equiv CO ₂ (%)	Energy (GJ)	Energy Cost Savings (\$)
Residential Sector	370,529	21.9	3,934,500	28,849,875
Commercial Sector	605,537	35.8	8,692,000	45,000,000
Industrial Sector	191,270	11.3	900,000	17,500,000
Transportation Sector	326,386	19.3	4,789,619	76,003,767
Waste Sector	198,000	11.7		3,000,000
Total	1,691,722	100.0	* Measur compar	res Summaries re:
Local Action Plan		(tonnes)	• t	he base year emissions,
Base Year Emissions		6,129,846	• F	predicted emissions,
Target Year Emissions Forecast		7,279,122	• t With 4	arget emissions level,
Target Emissions Level		4,903,877	taken	he impact of the actions
Emissions Reductions Required to	Meet Target	2,375,245	taixtii.	

Community Greenhouse Gas Emissions Reductions in 2010 Target Year Measures Detailed Report

	Equiv CO 2	Equiv CO 2	Energy	Energy Cost
	(tons)	(%)	(million Btu)	Savings (\$)
Residential Sector Energy Efficiency: Buildings Energy Retrofit Program Subtotal Residential	60,270 60,270	51.1 51.1	436,102 436,102	7,650,000 7,650,000
Commercial Sector Energy Efficiency: Equipment and Lighting Lighting Retrofit Program Subtotal Commercial	7 ,257 7 ,257	6.2 6.2	22,526 22,526	660,000 660,000
Industrial Sector Energy Efficiency: Buildings Subtotal Industrial	19,883 19,883	16.9 16.9	34,130 34,130	2,000,000 2,000,000
Transportation Sector Car/Van Pooling Van Pooling Program Subtotal Transportation	30,473 30,473	25.8 25.8	355,070 355,070	4,240,394 4,240,394
Total	117.884	10	0.47.007	44,550,004

Greenhouse Gas Detailed Report:

Detailed Reports show the emissions reductions by sector, measure type & record

Criteria Air Pollutant Detailed Report:

Detailed Reports show the emissions reductions by sector, measure type & record

Community Criteria Air Pollutant Reductions in 2010 Target Year Measures Summary

	NOx (lbs)	SOx (lbs)	CO (lbs)	VOC (lbs)	PM10 (lbs)
Residential Sector Energy Efficiency: Buildings Energy Petroft Program	185 461 7	351 706 2	23 991 7	4 033 1	9 9 <i>45</i> 1
Subtotal Residential	185,461.7	351,706.2	23,991.7	4,033.1	9,945.1 9,945.1
Commercial Sector					
Energy Efficiency: Equipment an Lighting Retrofit Program Subtotal Commercial	d Lighting 23,530.6	61,537.3 61,537.3	1,870.1 1,870.1	208.0 208.0	1,471.8 1,471.8
	23,530.6	01,001.0	1,010.1	200.0	1,111.0
Industrial Sector Energy Efficiency: Buildings					
Subtotal Inductrial	65,571.0	186,248.3 186,248,3	4,186.5 4,186.5	314.6 314.6	4,284.6 4,284.6
Subtotal muusulai	65,571.0	100,240.5	4,100.5	514.0	4,204.0
Transportation Sector Car/V an Pooling					
Van Pooling Program	200,591.6	9,397.4 9,397.4	1,937,610.2 1,937,610,2	204,885.0 204,885.0	4,173.1
Subtotal Hansportation	200,591.6	0,007.4	1,007,010.2	204,000.0	4,170.1
All Measures	475,154.8	608,889.3	1,967,658.5	209,440.8	19,874.6

Mea	sures Listing R	eports:				
Provide a full analysis of the characteristics and impacts of a measure, including simple payback periods based on energy and implementation costs			Page ommunity riteria Air Pollutant Reductions in 2010 Measures Listing			
	Residential Sector				Lo	cation of Measure:
	Type of Measure: Energy Effi	ciency: Buildings				
		Me	easure	e Name		
	Energy Retrofit Program					
		Me	asure	Details		
	Affected Energy Source 1			Affected Energy S	Source 2	
	Electricity			Natural Gas	Commerc	ial
	Energy Reduction	37,500,	,000	Energy Reductior	1.	302,042
	Unit	(k [,]	Wh)	Unit		(thous cu ft)
	Price per Unit		\$.10	Price per Unit		\$12.91
	Ramp-In Factor	10	00%	Energy Reduction	ı (million Btu)	436,102
	Year Implemented	1	999	Emission Reduct	ion (tons eCO2)	60,270
	Implementation Cost	\$50,000	,000	Savings (\$/year)		\$7,650,000
				Payback Period (years)	6.5
	The emission reduction from th	s measure as a percentage	of tota	al reductions:		51.1%
	NOx Reduction	SOx Reduction	С	O Reduction	VOC Reduction	PM10 Reduction
	(lbs)	(lbs)		(lbs)	(lbs)	(lbs)
	185,462	351,706		23,992	4,033	9,945

How Is This Information Used

- Reports provide sector by sector comparisons of emissions and energy use reductions
- Identify potential inefficiencies and areas for improvement
- Bring together data in a central location, and create a permanent record of research and analysis
- Compare the results of alternative measures
- Compare jurisdictions
- Produce analytical support for actions and policies
- Show how your jurisdiction is meeting its emission goals

Examples of Other Types of Presentational Material the Software Can Create

The CACP Software is compatible with many common spreadsheet and word processing tools, for ease of expanding the analysis and including data in reports and other documents

The following slides show "real world" samples of how data from the CACP Software has been used in reports

Government Operations Emissions Summary Where are the emissions coming from?

1999 Greenhouse Gas Emissions in a Sample City divided by Sector

Total Emissions: 6,070 tons eCO_2

Comparing Costs & Emissions in Government Facilities How efficient are your buildings?

Comparing the Source of the Total Reductions Included in an Action Plan

Side-by-side measure comparisons allows jurisdictions to assess the relative impact of the actions included in their actions plans or being undertaken by the community

STAPPA/ALAPCO

Questions?!?

Contact us at...

Jim Yienger Program Manager

jim.yienger@iclei.org

Ryan Bell Program Officer ryan.bell@iclei.org

Phone: 510 - 844 - 0699

