PFAS in Wisconsin 2020 Precipitation & 2022 Air Studies

Katie Praedel, Wisconsin Department of Natural Resources

The second se

What are **PFAS**?

Per- and PolyFluoroAlkyl Substances -

- Carbon-Fluorine bonds make these compounds highly stable, water- and oil- resistant
- Used in countless commercial products, and in firefighting foam as a surfactant

Most classes of PFAS don't degrade naturally -

- Accumulate in environment
- Now exists in surface and ground water, drinking water, rainwater, sediment, ice caps... etc.
- Concentrations vary based on nearby sources
- Transport mechanisms aren't fully understood

Perfluorooctanoic acid (PFOA)

<u>High concentrations and exposure</u> over time are known to cause negative health effects –

- Loss of reproductive health
- Developmental delays in children
- Increased cancer risk
- Compromises immune system

Wisconsin 2020 PFAS in Precipitation Study NADP/NTN Monitoring Site Map

- Conducted PFAS precipitation monitoring at 8 National Atmospheric Deposition Program (NADP/National Trends Network (NTN)) sampling sites
- \circ Two studies
 - **Spring/Summer 2020** Background study at 7 sites (14 weeks)
 - Fall Source study at 2 sites
 - Marinette temporary installation
 - Trout Lake comparison permanent site
- Data from both studies combined for the purposes of sharing the results

2020 Sampling – Quality Assurance

NTN Site ID	NTN Site Name	Precipitation Samples	Field Method Blanks	Field Matrix Spikes	Methanol Trip Blanks	Sample Splits (DUPS)
WI06	UW Arboretum	13	2	1	2	1 pair
WI08	Brule River	9	2	1	2	1 pair
WI10	Potawatomi	9	2	1	2	1 pair
WI31	Baraboo	9	2	1	2	1 pair
WI35	Perkinstown	11	2	1	2	1 pair
WI36	Trout Lake	18	2	1	2	2 pairs
WI37	Spooner	10	2	1	2	1 pair
WI19	Marinette	10	1	1	1	1 pair
	TOTAL	89	15	8	15	9 pairs

NTN Wet-Only Collector

89 Precipitation Samples + 47 QA Samples = 136 Total Samples

WI 2020 Study Results – Frequency of PFAS Detection

22 PFAS compounds were detected in at least 2 samples

- The carboxylates (PFCAs) were the most frequently detected PFAS compound class
- With the exception of PFOS, the sulfonates (PFSAs) are less abundant in the precipitation
- PFOA detected in nearly 100% of samples and PFOS detected in over 80% of samples
- FTSAs (fluorotelomersulfonates), GenX and FASAs (perfluorosulfonamides) are less frequently detected, but important at certain sites

PFAS Signatures by Site - Regional Trends

Generally similar signatures at five of the sites:

Higher PFOS and PFOA contributions at Perkinstown and Baraboo

Site 19 (Marinette) is very different

- FTSAs are major contributors
- Point source impacted (6:2 FTSA an AFFF tracer)
- Site was designed to measure a point source (< 1 mile from the source)

Summed Concentrations by PFAS Class

Total summed PFAS (of 36 quantified) never above 6.5 ng/L

Highest PFOA + PFOS observed at Baraboo: (Max sum: 1.9ng/L median sum: 0.4ng/L) Still lower than the WI groundwater action level

Same magnitude as other studies collecting precipitation in rural/nonindustrial regions (Dreyer et al 2010, Kwok et al 2010, Gewurtz et al 2019)

Key Points / Lessons Learned

- 1. Concentrations of individual PFAS compounds in precipitation are typically <1 ng/L, though levels can be significantly higher at specific sites/dates.
- 2. The carboxylates (PFCAs) dominate the PFAS composition of precipitation primarily as a result of atmospheric processing.
- 3. Legacy PFAS compounds (PFOS, PFOA) are STILL major contributors to PFAS atmospheric pools
- 4. With the appropriate datasets and modeling tools, one should be able to resolve point/local sources from regional/background levels and sources.
- 5. A comprehensive field and laboratory quality assurance (QA) program is essential to the production & documentation of high quality, defensible atmospheric PFAS data.
- PFAS deposition rates were relatively uniform across the study sites: Average 7.3 ng/m²/day for the study period.

PFAS 2022 Air Method Development

WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DNR.WI.GOV

Long-Term PFAS in Precipitation Monitoring and PFAS in Air Method Development

- Wisconsin will host 2 of 9 long term PFAS precipitation monitoring sites
- Wisconsin will have 2 air method development
 PFAS supersites
 - DNR Baraboo
 - WSLH Madison Eagle Heights

2 Supersites: Air and Precipitation Instrumentation

PUF + High Vol Sampler	NADP NTN Bucket Collector			
3 samplers on site	2 samplers on site			
Weekly Sample Collection by DNR and WSLH/NADP for 1 year				
Event based samples	Event based samples			

2 Supersites: Wisconsin Sampling Plan

Baraboo Air monitoring site

- Three Hi-Volume PUF samplers
- Two NADP Precipitation samplers
- One soil sample

Baraboo Water Samples

- One Sediment core
- Two Multi-depth water samples

Madison (Eagle Heights and Arboretum)

- Three Hi-Volume PUF samplers
- Two NADP Precipitation samplers
- Multiple soil sample

Federal Method Development Goal

Ambient Air sampling method and standardized **sampling media**

-

- May be used to support further refinement of Stack test method
 - Other Test Method (OTM) 45
- Bring together stack testing and ambient methods for comparability among them

Wisconsin's Goals

- Maximize supersite method development
- Investigate pressing scientific questions related to PFAS partitioning and transport between different environmental media (soil, rain, surface water, sediment and air)
 - This work directly supports the WISPAC research goals.
 - 1.<mark>Standard Setting</mark>
 - 2.<mark>Sampling</mark>
 - 3.Pollution Prevention
 - 4. Engagement, Education, and Communication
 - 5.Research and Knowledge
 - 6.Phase Out
 - 7.<mark>Future Investments</mark>
 - 8.Identifying and Addressing Historic Discharges

Acknowledgements of Work and Collaboration

Martin Shafer Ph.D - Principal Scientific Adviser

Emily Sellers
- Primary Lab Operator

Entire WSLH PFAS Lab Group

Jamie Gauthier – Air Mon. Project Lead

> Site Operators: David Pfotenhauer Pam Foy Gilmore Alex Nyhus Erin Howard

National Atmospheric Deposition Program

All folks NADP @ WSLH For site support, sample intake and tracking (and NTN data)

John Offenburg EPA ORD Melissa Puchalski EPA ORD

> Erin Newman EPA Region 5

CONNECT WITH US

Katie Praedel

Katie.Praedel@Wisconsin.gov 608-259-6108

