Preliminary results from 2025-2030 U.S. technology and cost assessment

Nic Lutsey, Dan Meszler, Aaron Isenstadt, John German, Josh Miller

April 2017

Executive summary

- Based on the ICCT's latest technology assessment of the potential to reduce vehicle CO₂ emission in the 2025-2030 timeframe, we draw the following conclusions –
 - In 2025, more cost-effective efficiency technology is emerging. Based on state-ofthe-art updated data, new technologies provide 8-10% more CO₂ reduction, and costs for U.S. 2025 standards are projected to be 34-40% lower, than the latest official U.S. analysis.
 - <u>In 2030, 4 6% annual rate of improvement is cost effective</u>. A 4%-6% lower CO₂/mile from 2025 to 2030 can be achieved cost-effectively. Such improvements would gradually increase vehicle price by \$800 to \$1,300 in 2030 (compared with 2025), with 2-3 times greater consumer fuel savings than costs.
 - In 2030, electric vehicles are a more cost effective regulatory compliance pathway.
 Due to lower battery costs, our modeling shows that the use of 13%-23% electric vehicles would reduce overall manufacturer costs to comply with the CO₂ standards.

Project scope

- Assess technology potential for 2025-2030 standards
 - Modeling
 - Technology inputs and packages: U.S. EPA Lumped Parameter Model
 - Fleet modeling: U.S. EPA OMEGA
 - ICCT applies updates for technologies' CO₂ effectiveness and cost
 - ICCT technology papers: Turbo, hybrids, lightweighting, EVs, etc
 - Focus is on technologies for more widespread 2025-2030 introduction
 - Key research questions
 - What is the cost of 2025 compliance with less conservative technology assumptions?
 - What is the cost of a 2030 fleet with 4-6% lower CO₂ per mile annually from 2025-2030?

ICCT's modified individual technology inputs

 ICCT has updated several areas for 2025-2030 technology potential and costs, as compared to EPA's Proposed Determination analysis for 2022-2025

	Fuel consumption and CO ₂ reduction (average) ^a		Direct manufacturing cost (average) ^b		
	U.S. EPA	ICCT	U.S. EPA	ICCT	
Cylinder deactivation	3.5%-5.8%	No change	\$75-\$149	No change	
Dynamic cylinder deactivation ^c	Not included	6.5%-8.3%	Not included	\$138-\$256	
Direct Injection ^d	1.5%	No change	\$196-\$356	\$91-\$185	
Cooled exhaust gas recirculation	1.7%-5.3%	No change	\$216	\$95-\$114	
Advanced diesel	20%-25%	No change	\$2,104-\$2,950	\$1,491-\$2,096	
E-boost	Not included	5.0%	Not included	\$338	
Mild hybrid (48-volt)	7.0%-9.5%	10.5%-12.9%	\$580	No change	
High compression ratio ^e	3.4%-7-7%	10.1%-14.1%			
Miller cycle ^f	12%-20%	No change	Varies	\$93-\$222 lower	
Plug-in hybrid electric vehicle ^g	72-84%	No change	\$5,534-\$10,371	\$3,564-\$7,805	
Battery electric vehicle g	100%	No change	\$5,131-\$10,663	\$2,410-\$9,098	
Mass Reduction (20%)	11.2%-13.7%	11.6%-13.7%	\$0.17-\$1.15 per pound	No change	

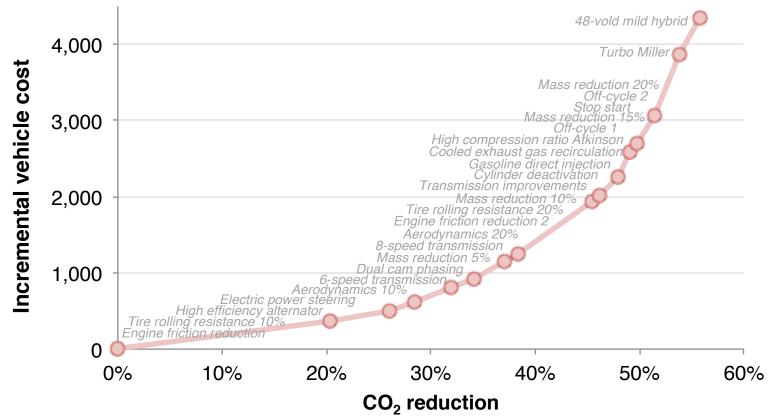
^a Benefits vary by vehicle type, engine size; improvements shown for individual technology; effects for multiple technologies handled in lumped parameter model

^b Costs are direct manufacturing costs and vary by vehicle type and engine size

^c Includes variable valve lift technology

^d Direct injection technology without synergistic technologies such as cooled exhaust gas recirculation and turbocharging

^e Includes Atkinson cycle, direct injection, and cooled exhaust gas recirculation

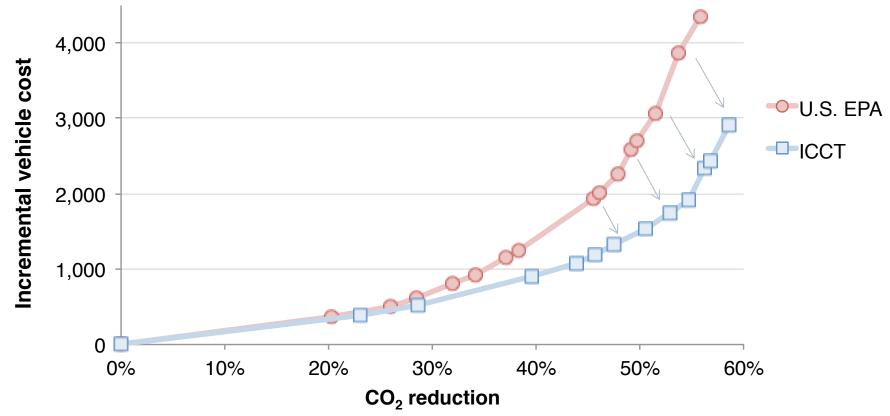

^{*f*} Includes Atkinson cycle, 24 bar turbocharging, cooled exhaust gas recirculation, and engine downsizing;

^g Range shown for vehicle type #1 through #6, including low and high electric range and in-home charger

icct THE INTERNATIONAL COUNCIL ON Clean Transportation

Technology package cost curve

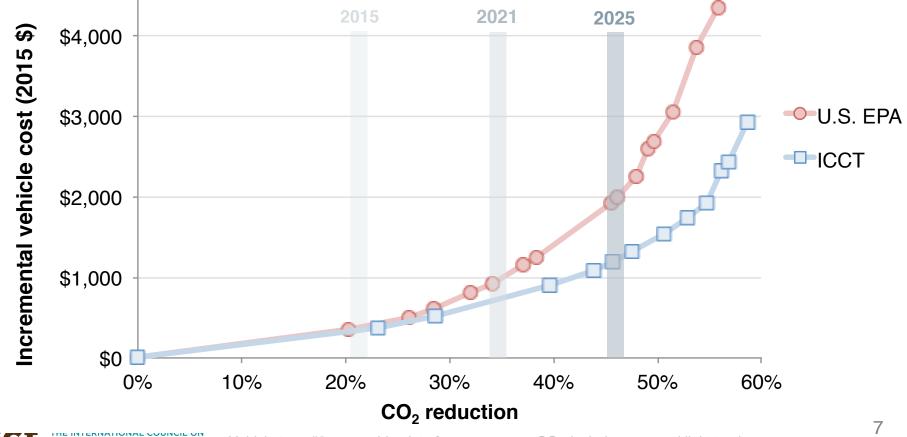
 The typical EPA cost curve for 2025 below shows the increase in technology to reduce CO₂, and the associated incremental cost



Vehicle type #6, near mid point of passenger car CO_2 ; includes cars and light truck crossovers; air conditioning technologies and costs are not shown

Technology package cost curve

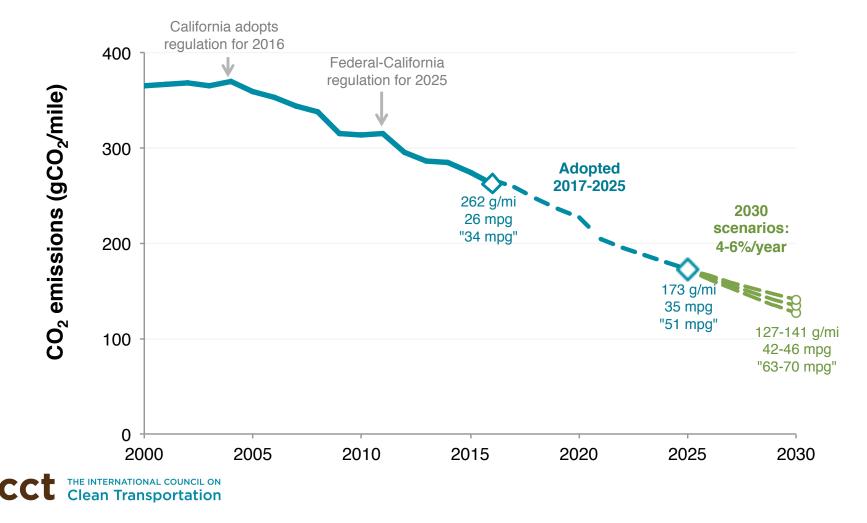
- With ICCT's technology input updates, the 2025+ CO₂-reduction technology frontier expands and costs are lower
 - For given cost, ~8-9% greater CO₂ reduction achievable with advanced combustion



Vehicle type #6, near mid point of passenger car CO_2 ; includes cars and light truck crossovers; air conditioning technologies and costs are not shown

Technology package cost curve

Clean Transportation


- The 2015 fleet has added much of the low-cost technologies to $\sim 20\%$ CO₂
- Meeting 2025 standards: Advanced technology ~45% CO₂ reduction
 - Technology cost for 2025: EPA \$2,100 versus ICCT \$1,300

Vehicle type #6, near mid point of passenger car CO_2 ; includes cars and light truck crossovers; air conditioning technologies and costs are not shown

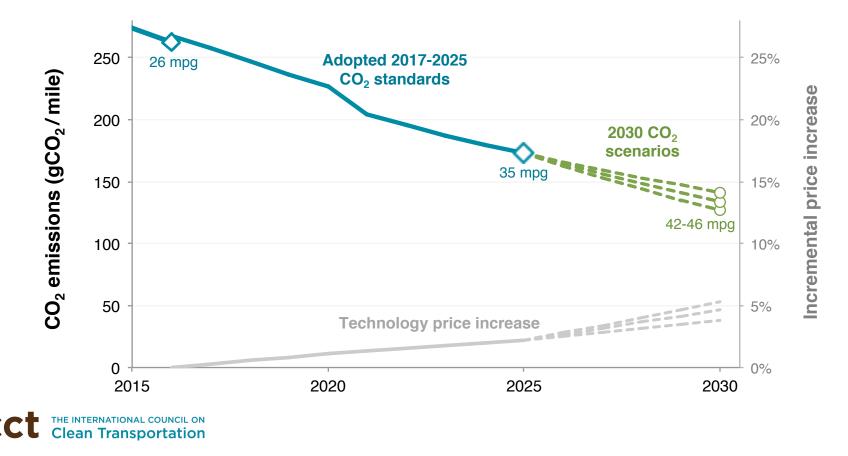
How low might 2030 standards go?

- We evaluate standards that reduce CO₂ by 4-6%/year for 2025-2030
 - This would achieve ~134 g CO₂/mile, ~44 mpg consumer label (nominal ~66 mpg)

Fleet modeling of 2030 standards

Technology penetration

- Cylinder deactivation, high compression Atkinson cycle \rightarrow 63-80% share in 2030
- Moderate hybrid penetration (mild and full)
- Beginning of electric vehicle launch
- Technology cost
 - Increase from 2015 to 2030 is \$1,700-\$2,200 (just from 2025 to 2030 is \$800-\$1,300)


Area	Technology	2025	2030 4%/year	2030 5%/year	2030 6%/year
Advanced combustion (non-hybrid)		93%	80%	72%	63%
Lightweighting (fleet average mass reduction)		9%	12%	13%	13%
Hybrid	Mild hybrid	0%	5%	9%	12%
	Full hybrid	2%	2%	2%	2%
Electric	Plug-in hybrid electric	2%	2%	2%	2%
	Battery electric	3%	12%	16%	21%
Fuel economy, test cycle (mpg)		46	55	57	60
Fuel economy, real world (mpg)		35	42	44	46
CO ₂ emissions test cycle (g/mile)		173	141	134	127
Incremental technology cost from 2025		-	\$772	\$1,038	\$1,343

- \rightarrow 7-14% share in 2030
 - \rightarrow 13-23% share in 2030

Fleet modeling of potential 2030 standards

- ICCT results: Increased efficiency/CO₂-reduction technology comes with -
 - Cost of \$900 (2015 to 2025), plus \$800-\$1,300 for 4-6%/year CO₂ 2026-2030 standards
 - This is about 4-5% increase in vehicle price by 2030
 - These technology costs are ~40% lower than U.S. EPA's

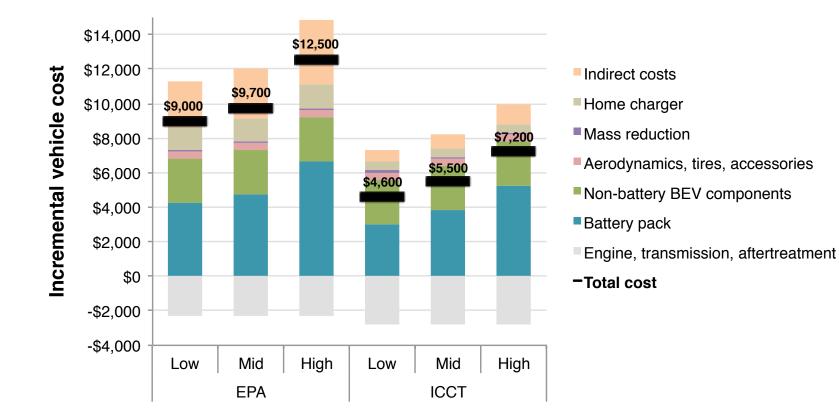
Next steps

Status update

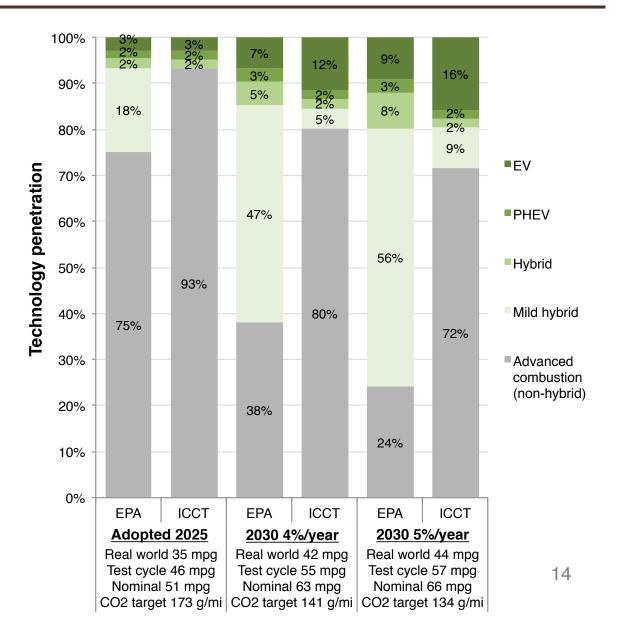
- ICCT Report released on March 22, 2017: http://www.theicct.org/US-2030technology-cost-assessment
- March-April: Present results to US NGOs, discuss release
- May-August: Release followup Reports with additional analyses
- Potential follow-up work
 - Consumer cost, benefit payback (briefing paper)
 - Model costs of multiple technology approaches (naturally aspirated, turbocharged, 48v hybrid, lightweighting) to illustrate there are many costeffective pathways to comply with the standards
 - Electric vehicle integration in standards (combined US-EU working paper)
 - Applying ICCT new fleet modeling capability to modify OMEGA for Brazil, Mexico, etc

Contact

International Council on Clean Transportation: <u>http://theicct.org</u> U.S. vehicle efficiency papers: <u>http://www.theicct.org/policies/us-cafe-standards</u>


Acknowledgements

Energy Foundation, Heising-Simons Family


Electric vehicle costs: EPA vs ICCT

- With ICCT's electric vehicle costs ~40% lower than EPA's
 - Mostly this is due to lower battery costs (ICCT \$140/kWh vs EPA 180-200/kWh)
 - Other factors: indirect costs, home charger, engine aftertreatment subtraction

Fleet modeling of 2025-2030 standards: EPA vs ICCT

- ICCT: Greater advanced combustion vehicle potential
 - Dynamic cylinder deactivation
 - Greater Atkinson cycle benefit
 - Cooled EGR cost reduction
 - Lower cost lightweighting
 - Greater mild hybrid benefits
- ICCT: EVs become more cost-effective by 2030
 - Battery cost reductions

icct THE INTERNATIONAL COUNCIL ON Clean Transportation