Monitored Ratio Method (MRM): Location-specific NO_2/NO_X ratios based on NO_X concentration. Written by Eric Peters New Mexico Environment Department/Air Quality Bureau 1301 Siler Road, Building B Santa Fe, NM 87507-3113 505-476-4327 Eric.Peters@state.nm.us May 25, 2011 ### AERMOD predicts much higher NO₂ concentrations than monitors #### 4-Corners Modeling and Modeling ## Data from all New Mexico NOx monitors #### NM monitored NO₂/NO_x ratio vs NO_x # Maximum NO₂/NO_x ratios from NM monitors and Blewitt study ### NO₂ concentration predicted by NO_x concentration Graph of NO₂ concentration vs. NO_x concentration (based on $[NO_2]/[NO_x] = 1.3571 e^{(-5.5897*[NOX])}$ #### Ozone - Higher ozone concentrations will produce higher NO₂/NO_X ratios. - Areas with higher ozone concentrations may have different curve. ## Maximum and minimum NO₂/NO_X ratios - The highest possible NO₂/NO_X ratio is 1.0 - Minimum NO₂/NO_X ratio is in-stack NO₂/NO_X ratio # Example concentration plot based on minimum NO₂/NO_x ratio of 0.3 Graph of NO₂ concentration vs. NO_x concentration (limited by 0.3 in-stack NO₂/NO_x ratio) #### Implementation work - Look at NO₂/NO_x vs NO_x concentration data in your area - Are NO₂/NO_x ratios higher? - Is ozone higher? Feel free to send me your data. #### Comments? Are there reasons this technique would not work?