Monitored Ratio Method (MRM): Location-specific NO_2/NO_X ratios based on NO_X concentration.

Written by Eric Peters

New Mexico Environment Department/Air Quality Bureau
1301 Siler Road, Building B
Santa Fe, NM 87507-3113
505-476-4327
Eric.Peters@state.nm.us

May 25, 2011

AERMOD predicts much higher NO₂ concentrations than monitors

4-Corners Modeling and Modeling

Data from all New Mexico NOx monitors

NM monitored NO₂/NO_x ratio vs NO_x

Maximum NO₂/NO_x ratios from NM monitors and Blewitt study

NO₂ concentration predicted by NO_x concentration

Graph of NO₂ concentration vs. NO_x concentration (based on $[NO_2]/[NO_x] = 1.3571 e^{(-5.5897*[NOX])}$

Ozone

- Higher ozone concentrations will produce higher NO₂/NO_X ratios.
- Areas with higher ozone concentrations may have different curve.

Maximum and minimum NO₂/NO_X ratios

- The highest possible NO₂/NO_X ratio is 1.0
- Minimum NO₂/NO_X ratio is in-stack NO₂/NO_X ratio

Example concentration plot based on minimum NO₂/NO_x ratio of 0.3

Graph of NO₂ concentration vs. NO_x concentration (limited by 0.3 in-stack NO₂/NO_x ratio)

Implementation work

- Look at NO₂/NO_x vs NO_x concentration data in your area
- Are NO₂/NO_x ratios higher?
- Is ozone higher?

Feel free to send me your data.

Comments?

 Are there reasons this technique would not work?