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INTRODUCTION 

Pursuant to Clean Air Act Section 307(d), and for the reasons set forth below, the States 

of California (by and through Attorney General Xavier Becerra and the California Air Resources 

Board), Connecticut, Delaware, Illinois, Maryland, Minnesota, New Jersey, New York, Oregon, 

Rhode Island, Vermont, Washington, and Wisconsin; the Commonwealths of Massachusetts, 

Pennsylvania, and Virginia; and the City of New York (collectively, State Petitioners) hereby 

petition the U.S. Environmental Protection Agency (EPA) for reconsideration of its recent final 

action determining that strengthening the National Ambient Air Quality Standard (NAAQS) for 

particulate matter is not necessary to protect the public health. That action appears in the Federal 

Register, titled “Review of the National Ambient Air Quality Standards for Particulate Matter,” 

published at 85 Fed. Reg. 82,684 (Dec. 18, 2020). Reconsideration is warranted here because 

State Petitioners’ objections are based on information that arose after the end of the comment 

period concerning issues of central relevance to EPA’s final determination. 42 U.S.C. § 

7607(d)(7)(B). Since the close of the public comments, several critical new studies have both 

demonstrated that the current particulate matter standard is inadequate to protect the public 

health and have linked previously unidentified harms with increased exposure to particulate 

matter, health impacts that also disproportionately impact environmental justice communities 

throughout the nation. State Petitioners urge EPA to expeditiously reconsider the final rule and 

adopt new particulate matter standards that adequately account for the new information 

documented by these new studies.  

EPA’s decision not to strengthen the eight-year old particulate matter NAAQS fails to 

protect the public health and welfare from the effects of exposure to particulate matter as 

required under the Clean Air Act and is arbitrary and capricious, an abuse of discretion, and 
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otherwise in violation of the Act.1 EPA’s decision ignores substantial evidence demonstrating the 

serious harm to human health from particulate matter exposure at or below the existing NAAQS, 

repeatedly dismissing studies documenting such significant impacts due to purported 

“uncertainties.” 85 Fed. Reg. at 82,685. In light of these new studies further documenting this 

harm, EPA should reconsider its decision to retain the standard and act swiftly to correct these 

fundamental—and ultimately deadly—errors. The public health and welfare cannot wait another 

five years. 

The Clean Air Act requires that EPA reconsider its decision in light of new research 

released after the close of the public comment period—adding to the mountain of evidence 

demonstrating the serious harms related to particulate matter exposure and further underscoring 

the fallacy of any purported uncertainty asserted by EPA.2 42 U.S.C. § 7607(d)(7)(B). 

Specifically, a new study explicitly refutes EPA’s assertion that insufficient evidence exists to 

prove health harm to human health at levels below the existing particulate matter NAAQS, 

demonstrating clear benefits from further strengthening the particulate matter standards.3  

Another study just published found that fine particulate matter less than 2.5 microns (PM2.5) 

from fossil fuel combustion was responsible for double the amount of premature death 

worldwide than previously believed, and similarly showed significant health benefits from 

                                                           
1 State Petitioners accordingly filed a petition for review of EPA’s final rule on January 13, 2021. 
2 State Petitioners submitted several of these studies to EPA in a Supplemental Comment Letter 
on November 20, 2020, but EPA’s final decision does not adequately address the new 
information provided.  
3 Joel Schwartz, et al., A National Difference in Differences Analysis of the Effect of PM2.5 on 
Annual Death Rates (Journal Pre-Proof), at 20, ENV’T. RSCH., Vol. 194 (Mar. 2021), available 
at: https://www.sciencedirect.com/science/article/abs/pii/S0013935120315462?via%t3Dihub.    
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reductions in particulate matter even at low levels of exposure.4 Further, multiple studies have 

found links between increased mortality from COVID-19 and exposure to PM2.5, identifying 

additional significant potential injury to public health unaddressed in EPA’s determination.5 New 

research also demonstrates particulate matter exposure can lead to additional negative health 

impacts from serious neurodegenerative disorders such as Alzheimer’s disease and other 

dementia in older Americans. This new information demonstrates the clear need for EPA to issue 

stronger standards as quickly as possible.6 

These new studies further establish that EPA’s decision not to lower the particulate 

matter NAAQS represents a massive failure to address one of the most critical environmental 

justice issues facing the nation. As noted in State Petitioners’ original comments, a study recently 

estimated that the Black population’s PM2.5 burden was 54 percent higher than that of the general 

population, and the Latinx population’s PM2.5 burden was 20 percent higher.7 The study also 

found that those living in poverty experience a PM2.5 burden 35 percent greater than the general 

                                                           
4 Karn Vohra, et al., Global Mortality from Outdoor Fine Particle Pollution Generated by Fossil 
Fuel Combustion: Results from GEOS-Chem (Journal Pre-Proof), ENV’T. RSCH. (Feb. 9, 2021), 
available at: http://acmg.seas.harvard.edu/publications/2021/vohra_2021_ff_mortality.pdf, and 
at: http://acmg.seas.harvard.edu/publications/2021/vohra_2021_ff_sup.pdf (for Supplemental 
Materials).  
5 Andrea. Pozzer, et al., Regional and Global Contributions of Air Pollution to Risk of Death 
from COVID-19, 116 CARDIOVASCULAR RSCH. 14, 2247 (Sept. 30, 2020), available at: 
https://academic.oup.com/cardiovascres/advance-article/doi/10.1093/cvr/cvaa288/5940460;  
Xiao Wu, et al., Air Pollution and COVID-19 Mortality in the United States: Strengths and 
Limitations of an Ecological Regression Analysis, SCI. ADVANCES, at 1 (Nov. 4, 2020), available 
at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673673/. 
6 Liuhua Shi et al., Long-term Effects of PM2.5 on Neurological Disorders in the American 
Medicare Population: A Longitudinal Cohort Study, 4 THE LANCET E557, (Oct. 19, 2020), 
available at: https://www.thelancet.com/action/showPdf?pii=S2542-5196%2820%2930227-8.  
7 I. Mikati, Disparities in Distribution of Particulate Matter Emission Sources by Race and 
Poverty Status, 108(4) Am. J. of Public Health 480, 482 (Table 1) (Apr. 2018), available at: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844406/. 
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population. Both COVID-19 and neurocognitive disease, the two illnesses identified as 

exacerbated by particulate matter exposure, already disproportionately impact Black, Indigenous, 

and persons of color (BIPOC). Continuing to expose these historically burdened communities to 

dangerous levels of particulate matter will only exacerbate the disparity in the rates of diseases 

already suffered by these communities. 

EPA must address this cycle of environmental injustice. State Petitioners are encouraged 

that the White House has identified the particulate matter NAAQS determination as one of 

EPA’s actions to be reviewed for consistency with President Biden’s January 20, 2021, 

“Executive Order on Protecting Public Health and the Environment and Restoring Science to 

Tackle the Climate Crisis.”8 Promptly re-opening the proceedings would provide the opportunity 

for public comment on these significant harms and allow for EPA’s consideration of this new 

substantial evidence showing the need for EPA to reduce exposure to particulate matter to 

protect the public health. Accordingly, the State Petitioners respectfully request that EPA 

convene proceedings for reconsideration of the final decision or take other appropriate action to 

efficiently and expeditiously correct the deficient standard. 42 U.S.C. § 7607(d)(7)(B).   

LEGAL STANDARD 

EPA must convene a reconsideration proceeding if a person raising an objection shows: 

(1) grounds for the objection arose after the public comment period; and (2) the objection “is of 

central relevance to the outcome of the rule.” 42 U.S.C. § 7607(d)(7)(B). An objection is “of 

                                                           
8 See Executive Order on Protecting Public Health and the Environment and Restoring Science 
to Tackle the Climate Crisis, Jan. 20, 2021, available at: https://www.whitehouse.gov/briefing-
room/presidential-actions/2021/01/20/executive-order-protecting-public-health-and-
environment-and-restoring-science-to-tackle-climate-crisis/; see also Fact Sheet: List of Agency 
Actions for Review, January 20, 2021, available at: https://www.whitehouse.gov/briefing-
room/statements-releases/2021/01/20/fact-sheet-list-of-agency-actions-for-review/. 
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central relevance” if it provides “substantial support for the argument that the regulation should 

be revised.” Chesapeake Climate Action Network v. EPA, 952 F.3d 310, 322 (D.C. Cir. 2020). 

Furthermore, EPA has discretion to reconsider its actions even where the standards for 

mandatory reconsideration are not met. 

ARGUMENT 

The Clean Air Act requires that EPA promulgate and revise the primary NAAQS to assure 

the standards are stringent enough “to protect public health,” with “an adequate margin of 

safety.” 42 U.S.C. § 7409(b)(1). The NAAQS must be based on air quality criteria incorporating 

the “latest scientific knowledge.” Id. § 7408(a)(2). Courts have rejected EPA determinations that 

there is no need to lower the NAAQS level to protect public health or to provide an adequate 

margin of safety when the agency has failed to properly consider relevant new evidence. Am. 

Farm Bureau Fed'n v. E.P.A., 559 F.3d 512, 520 (D.C. Cir. 2009); see also Am. Lung Ass’n v. 

EPA, 134 F.3d 388, 392-93 (D.C. Cir. 1998) (EPA must provide adequate explanation for failure 

to revise NAAQS in light of relevant evidence); Lead Indus. Ass’n v. EPA, 647 F.2d 1130, 1154 

(D.C. Cir. 1980) (EPA must “err on the side of caution” in favor of more protective standards 

when setting NAAQS). 

I. EPA SHOULD RECONSIDER THE FINAL RULE IN LIGHT OF ITS FAILURE TO 
PROVIDE THE REQUISITE PROTECTION OF PUBLIC HEALTH AND WELFARE. 

The Final Rule is insufficiently protective of public health and welfare and is the product 

of arbitrary and capricious EPA decision making. Among other things, the agency arbitrarily 

gave little to no weight to epidemiological studies quantifying the mortality effects from 

particulate matter exposure, despite the centrality of that issue to the problem EPA is statutorily 

obligated to address. 
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Though there is no real doubt as to the value of the epidemiological studies, EPA chose to 

ignore them without good reason. As noted by Dr. Cristopher Frey, the head of the Independent 

Particulate Matter Review Panel and former member of the Clean Air Scientific Advisory 

Committee (CASAC) Review Panel for the 2012 revised PM NAAQS, “the weight of the 

evidence in this review is far stronger than what was available in the last review.”9 The 

Independent Particulate Matter Review Panel further noted that its conclusion that the particulate 

matter standards are insufficient to protect the public health is based on an overwhelming 

scientific consensus determined by conducting: 

[a] review of the scientific evidence from epidemiologic studies, toxicologic 
studies in animals, and controlled human exposure studies; this evidence is 
consistent within each discipline and coherent among the multiple disciplines 
in supporting a causal, biologically plausible relationship between ambient 
concentrations well below the current PM2.5 standards and adverse health 
effects, including premature death. The epidemiologic evidence is consistent 
across studies with diverse designs, populations, pollutant mixtures, locations, 
and statistical approaches.10 

Instead, EPA hid behind manufactured “uncertainties” alleged by some of members of the 

CASAC. 85 Fed. Reg. at 82,708, 82,717. But uncertainty is inherent in any scientific research, 

and can cut both ways—for instance, mortality effects from particulate matter exposure could 

well be worse than epidemiological studies suggest, not better. The statute explicitly requires 

EPA to account for such uncertainty when its sets the standards, telling EPA to select a standard 

that is sufficiently protective “with an adequate margin of safety.” 42 U.S.C. § 7409(b)(1). EPA 

                                                           
9 H. Christopher Frey, Ph.D., Public Comment on the Review of the National Ambient Air 
Quality Standards for Particulate Matter – The NAAQS PM Science Review Process and 
Outcome is Broken and Not Credible: EPA Should Follow the Science and the Law to Set Health 
Protective Annual and 24-Hour PM2.5 Standards, 70 (June 29, 2020) (EPA-HQ-OAR-2015-0072-
1006) [hereinafter Dr. Frey Comments on Proposed Rule]. 
10 H. Christopher Frey, Ph.D., Comment Submitted by H. Christopher Frey, Chair, Independent 
Particulate Matter Review Panel et al. (Attachment 1 – The Need for a Tighter Particulate-Matter 
Air-Quality Standard) (June 22, 2020) (EPA-HQ-OAR-2015-0072-0669).  
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cannot use uncertainty alone to justify not lowering the standards while providing for the 

necessary margin of safety. 

The agency also did not try to mitigate or lessen any uncertainty. Instead, EPA refused to 

meaningfully consider studies published after the Integrated Science Assessment (ISA), 

considering them only “provisionally.” 85 Fed. Reg. 82,690 – 82,691. EPA considered studies 

published up to March 31, 2017, for analysis in the ISA, with only a “limited” update for studies 

published up to December 31, 2017. Id. 82,690. In limiting the scope of its review, EPA 

unlawfully failed to adequately consider substantial scientific evidence that clearly demonstrates 

the need to reduce ambient concentrations of particulate matter. See Am. Farm Bureau Fed’n, 

559 F.3d at 520. 

Further, as the CASAC commented “the Draft ISA does not provide a sufficiently 

comprehensive, systematic assessment of the available science relevant to understanding the 

health impacts of exposure to particulate matter.” 85 Fed. Reg. 82,689. The CASAC 

recommended that EPA revise the ISA to consider a more comprehensive assessment of the 

available data, but EPA chose not to make any revisions, citing as justification the “back-to-

basics” memo drafted by former EPA Administrator Scott Pruitt, in which EPA declared it 

would conduct the particulate matter NAAQS review in a manner to “ensure” any revisions were 

“finalized” by December 2020, the last month of the Trump Administration. Id. The record is 

clear that, at every turn, EPA had the opportunity and obligation to consider the full scope of the 

overwhelming evidence warranting the strengthening of the particulate matter NAAQS, but 

instead chose to ignore such evidence under the guise of “uncertainty.” 
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Those errors and others might have been avoided had EPA not arbitrarily disbanded its 

particulate matter review panel or unlawfully purged CASAC of knowledgeable scientists whose 

work EPA had previously found deserving of grant funding, or even if EPA had simply given 

due consideration to the comments of the leading scientists that—having formerly made up the 

particulate matter review panel—formed the Independent Particulate Matter Review Panel. But 

EPA’s final failure to promulgate appropriately protective particulate matter standards was 

nonetheless an unforced error, not an inevitability. The many flaws in EPA’s process did not 

ultimately require that the agency arbitrarily ignore the strong scientific data demonstrating the 

connection between serious health risks and the current particulate matter standards. State 

Petitioners therefore request that EPA exercise its discretion to convene reconsideration 

proceedings to engage in a reasoned review of all of the evidence now before the agency, and 

that EPA promulgate tighter standards to adequately protect both human health, welfare, and the 

environment, as the Clean Air Act requires. As noted by Dr. Frey, “[i]f EPA followed the science 

using the same procedures and logic as in the last review, EPA would be proposing to revise the 

[particular matter NAAQS].”11   

II. EPA MUST RECONSIDER THE FINAL RULE IN LIGHT OF NEW STUDIES 
DEMONSTRATING SIGNIFICANT LONG-TERM HEALTH RISKS FROM PARTICULATE 
MATTER EXPOSURE. 

Further, EPA is statutorily required to convene reconsideration proceedings to evaluate 

important new evidence that arose after the close of public comment and is of central relevance 

to EPA’s decision not to strengthen the NAAQS to adequately protect public health. These 

studies include those demonstrating significant public health risks at levels below the current 

                                                           
11 Dr. Frey Comments on Proposed Rule, supra note 9, at 70. 
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NAAQS, in addition to studies linking particulate matter exposure to serious health impacts 

related to the COVID-19 pandemic and increases in dementia and other severe neurological 

disease. 

A. Petitioners Were Unable to Raise These Objections During the Public 
Comment Period Because Key Studies Had Not Yet Been Published. 

Since the close of public comments in June 2020, new research has raised serious doubt 

about the accuracy of EPA’s prior justification for not strengthening the particulate matter 

NAAQS.  State Petitioners present several critical new studies below, necessitating 

reconsideration of EPA’s prior decision not to establish stronger standards that adequately 

protect the public health and safety. 

1. A Key New Study Refutes EPA’s Claim That Health Impacts from 
Particulate Matter Exposure Below the Current Standard May Be 
the Result of Unmeasured Confounders. 

  A new study to be published in March directly refutes EPA’s assertion that strengthening 

the particulate matter NAAQS is unnecessary due to alleged uncertainties and biases in the 

available research. Public health researchers have determined that PM2.5 exposure at levels below 

the current standard annual standard of 12 μg/m3 is associated with increased mortality, 

concluding “that reducing PM2.5 concentrations in the U.S. could save tens of thousands of 

premature deaths each year.12 This new study was developed in direct response to the EPA 

Administrator’s dismissal of the epidemiological studies showing a relationship between health 

impacts and PM2.5 exposure.13 Specifically, the new study responds to EPA’s assertion that 

                                                           
 
13 Joel Schwartz, et al., supra note 3, at 17 (“Some scientists . . . assert that studies using standard 
epidemiological methods should be given little weight in revising the NAAQS, and propose 
restricting to studies using causal methods .... Their main criticism is that traditional approaches 
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epidemiological studies “are not necessarily indicative of causal relationships,” because such 

associations “‘can reasonably be explained in light of uncontrolled confounding and other 

potential sources of error and bias.’” 85 Fed. Reg. 82,707. To address the Administrator’s 

unsubstantiated concerns, the researchers developed a “causal method, controlling for 

temperature and socioeconomic status, and all individual and area level potential confounders, 

measured or unmeasured, that vary slowly over time.”14 Consistent with the prior 

epidemiological studies, the researchers found that exposure to PM2.5 has significant negative 

impacts on public health, estimating that reducing the standard by 1 μg/m3 could help avoid 

239,900 early deaths each year.15 In other words, the researchers concluded that 1 µg/m3 of 

exposure, at levels below the current standard, for one year “results in an increased risk of dying 

of 4.26 per ten thousand.”16 Further, because this study’s findings support the results of the 

epidemiological studies dismissed by the Administrator, those “other studies are unlikely to have 

been confounded by temperature, or slowly varying SES, racial, and behavioral factors which 

this study controlled for.”17 

                                                           
only show associations that may be confounded... and do not inform causality .... [and] 
individual characteristics, socioeconomic status, and temperature may confound the published 
literature. EPA recently proposed not tightening the NAAQS for PM2.5 relying on these 
arguments.”). 
14 Id. at 17-18. 
15 Id. at 19.  
16 Id. 
17 Id. 
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2. Another New Study Highlights the Deadly Impacts of PM2.5 
Exposure and the Significant Health Benefits to Strengthening the 
NAAQS. 

A new global study focusing on PM2.5 attributable to the burning of fossil fuels 

demonstrates that exposure to such fine particulate matter causes significantly more disease and 

death than previously estimated.18 The study estimates a global toll of 10.2 million annual 

premature deaths attributable to PM2.5 exposure, including over 350,000 premature annual deaths 

in the United States, highlighting the astoundingly high health impacts from particulate matter 

exposure related to controllable sources like fossil fuel combustion. Critically, the study also 

indicates that decreases in PM2.5 exposure at levels below the current NAAQS would 

substantially reduce mortality rates. At a mean exposure rate of 10 μg/m3, each 1 μg/m3 increase 

in PM2.5 was associated with a 1.29% increase in mortality, whereas that rate decreased 

significantly to 0.94% at a mean exposure of 20 μg/m3, 0.81% at 30 μg/m3, and 0.79% at 40 

μg/m3.19  This new evidence supports the conclusion that a reduction in the particulate matter 

NAAQS below the existing standards will substantially reduce mortality rates from particulate 

matter exposure and is necessary to protect the public health and safety.   

3. Newly Available Studies Link Particulate Matter Exposure to 
Significant Health Impacts from Respiratory Viruses Like COVID-
19. 

As of February 16, 2021, over 27 million people in the United States have been infected 

with COVID-19, a deadly virus that attacks the same respiratory and cardiovascular systems 

harmed by particulate matter exposure.20 Despite this unprecedented public health crisis and its 

                                                           
18 Karn Vohra, et al., supra note 4. 
19 See id. at supplemental materials 11-12. 
20 COVID Data Tracker, Centers for Disease Control and Prevention (as of Feb. 16, 2021), 
available at: https://covid.cdc.gov/covid-data-tracker/#datatracker-home. 
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potential long-term health impacts, EPA has determined that no reduction in the particulate 

matter NAAQS is necessary to protect public health. While preliminary data noted a relationship 

between COVID-19 and exposure to particulate matter, research published since the close of 

public comment has clearly established a disturbing link between increased COVID-19 mortality 

and particulate matter exposure. In light of this new information, EPA must reconsider its 

decision and strengthen the particulate matter standards. 

One study published after the end of public comments found dramatic increases in 

COVID-19 mortality attributable to exposure to PM2.5.21 The analysis characterized global 

exposure levels of PM2.5 to determine the extent to which such exposure was a cofactor 

increasing the risk of death from COVID-19. Like the NAAQS, the study focused only on 

anthropogenic fossil fuel related PM2.5 to determine the impact of avoidable air pollution on 

COVID-19 mortality. The findings were stark. In countries with strict air quality standards and 

lower air pollution like Australia, where the annual PM2.5 limit is 8 μg/m3, the fraction of 

COVID-19 mortality attributable to human-made air pollution was 3%.22 By comparison, in the 

United States, where the annual PM2.5 limit will remain 12 μg/m3 under EPA’s existing action, 

the COVID-19 mortality attributable to human-made air pollution was 18%, six times higher 

than the percentage in Australia. A second new study found a direct link between the amount of a 

region’s long-term PM2.5 exposure and its COVID-19 mortality rate.23 Analyzing county-level 

data in the United States, the study found that a mere 1 μg/m3 increase in the long-term average 

                                                           
21 A. Pozzer et al., Regional and Global Contributions of Air Pollution to Risk of Death from 
COVID-19, Cardiovascular Research, Sept. 30, 2020, available at: 
https://academic.oup.com/cardiovascres/advance-article/doi/10.1093/cvr/cvaa288/5940460. 
22 See Andrea. Pozzer, et al., supra note 5, at Supplementary Table, Table S1. 
23 Xiao Wu, et al., supra note 5, at 1. 
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PM2.5 is associated with a statistically significant 11% increase in the county’s COVID-19 

mortality rate. 

Such studies serve to highlight the enormous health benefits from reducing particulate 

matter exposure, which include protecting those who may continue to battle health impacts 

related to COVID-19’s devastation of respiratory systems over the long-term, or 

“long-haulers.”24 While uncertainty remains about COVID-19’s long-term health impacts, initial 

studies have found instances of severely impaired pulmonary capacities months after initial 

infections.25 As the nation confronts the lasting effects of the COVID-19 pandemic, and 

addresses new mutations and future viruses, EPA also must consider whether the particulate 

matter NAAQS is sufficiently protective of the public health in light of the long-term respiratory 

problems faced by recovering patients.  

Despite the ongoing respiratory pandemic impacting millions of Americans, EPA’s only 

acknowledgment of COVID-19 comes in a few sentences in its response to comments. Notably, 

it does not address any of the numerous relevant studies that came out after the close of the 

comment period, several of which were submitted by State Petitioners in its supplemental letter. 

It does make the remarkable and wholly unsupported claim that early studies tying COVID-19 to 

particulate matter exposure were somehow “generally consistent with the evidence assessed in 

                                                           
24 See, e.g., Rita Rubin, As Their Numbers Grow, COVID-19 “Long Haulers” Stump Experts, 
JAMA (Sept. 23, 2020), available at: 
https://jamanetwork.com/journals/jama/fullarticle/2771111.   
25 See Chaolin Huang, et al., 6-Month Consequences of COVID-19 in Patients Discharged from 
Hospital: A Cohort Study, 397 THE LANCET 220-232 (Jan. 8, 2021), available at: 
https://www.thelancet.com/action/showPdf?pii=S0140-6736%2820%2932656-8. See also 
European Lung Foundation, COVID-19 Patients Suffer Long-Term Lung and Heart Damage but 
it Can Improve with Time, SCIENCE DAILY (Sept. 6, 2020), available at: 
https://www.sciencedaily.com/releases/2020/09/200906202950.htm. 
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the [Integrated Science Assessment],” Response to Comments, p. 37, despite the fact that the 

analysis referenced was completed before the first reported COVID-19 outbreak. 

4. New Studies Show Increases in Serious Neurodegenerative Diseases 
from Exposure to Particulate Matter. 

An important new study demonstrating that increased particulate matter exposure 

exacerbates the risk of serious neurological disorders also warrants that EPA reconsider its 

decision not to lower the standards.26 The study adds critical new evidence to emerging links 

between particulate matter air pollution and neurodegenerative conditions suffered by millions of 

American residents, including impaired cognitive function, accelerated cognitive decline, 

Parkinson’s disease, Alzheimer’s disease, and dementia.27 This nationwide, long-term study 

found significant correlations between increased PM2.5 exposure and first-time hospital 

admittances for diagnoses of Parkinson’s disease, Alzheimer’s disease, and related dementias in 

patients over 65.28 Researchers found a strong linear relationship between incidences of 

neurodegenerative disease and increases in PM2.5 exposure. This linear relationship was observed 

at PM2.5 exposures down to 7μg/m3—well below the current standard, indicating that lowering 

the PM2.5 standard will have meaningful public health benefits across the country. This study 

released after the close of public comment further demonstrates the need for EPA to strengthen 

the particulate matter NAAQS to protect the State Petitioners’ populations from the devastating 

impacts of serious cognitive disorders. 

                                                           
26 Liuhua Shi et al., supra note 6. 
27 Id. at E564. 
28 Id. at E557. 
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B. The Identification of Serious New Threats to Health from Particulate 
Matter Exposure Are of Central Relevance to EPA’s Unlawful Decision. 

New evidence of decreased mortality at levels of PM2.5 exposure below existing standards 

and the existence of significant new threats to public health is of “central relevance” to EPA’s 

decision not to strengthen the particulate matter NAAQS, obligating EPA to reconsider the 

decision. The additional studies clearly “provide substantial support for the argument that the 

regulation should be revised.” Chesapeake Climate Action Network, 952 F.3d at 322. To justify 

its decision that strengthening the particulate matter NAAQS is unnecessary to protect public 

health with an adequate margin of safety, EPA’s decision repeatedly cites the “uncertainty” of 

the health benefits from the studies reviewed.29 These new studies dispel that alleged uncertainty. 

As noted above, EPA’s decision rests significantly on its dismissal of several critical 

epidemiological studies due to assertions that they do not necessarily prove causal relationships 

between negative health impacts and levels of particulate matter below the current NAAQS 

standard, pointing to “uncontrolled confounding and other potential sources of error and bias.’” 

85 Fed. Reg. 82,707. But the new study by Schwartz et al. cited above successfully demonstrates 

that uncontrolled factors were not the source of any error and bias, solidifying the link between 

particulate matter exposure and serious negative health impacts. The study is of central relevance 

because it addresses and refutes the primary rationale the Administrator relied on to not 

strengthen the current particulate matter NAAQS, and it also demonstrates significant public 

                                                           
29 See 85 Fed. Reg. 82,685 (“For the primary PM2.5 standards, the Administrator concludes that 
there are important uncertainties in the evidence for adverse health effects below the current 
standards and in the potential for additional public health improvements from reducing ambient 
PM2.5 concentrations below those standards… [The Administrator] concludes that, based on the 
newly available evidence with its inherent uncertainties, the current primary PM10 standard is 
requisite to protect public health, with an adequate margin of safety, from effects of PM10 in 
ambient air, and should be retained, without revision” [emphasis added].) 
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health impacts from exposure to particulate matter below the current standard. The study 

conducted by Vohra et al. also cited above further demonstrates the likelihood of substantial 

public health improvements below the current PM2.5 standards and the need for EPA to 

strengthen the particulate matter NAAQS. Even if purported uncertainties were originally a valid 

basis for EPA’s decision, these new studies substantially lessen any uncertainty, undercutting the 

basis for EPA’s decision and requiring reconsideration.  

Further, whatever margin of safety that may be embodied in the current NAAQS is 

significantly reduced, if not eliminated entirely, once the relationship to COVID-19 and 

increases in neurocognitive diseases are considered. In light these facts, EPA must strengthen the 

NAAQS to a level that reintroduces the necessary buffer to provide an adequate margin of safety 

as required by the Clean Air Act. Even if the COVID-19 pandemic somehow subsides entirely, 

the long-term respiratory impacts noted above will likely leave significant portions of the public 

more vulnerable to particulate matter harms. Likewise, the links between particulate matter 

exposure and devastating neurological diseases like Alzheimer’s and Parkinson’s, as established 

in the Shi et al. study discussed above, are particularly relevant to the millions of Americans over 

65, a population that is expected to double by 2060. Such a demographic shift in the American 

population will substantially increase the amount of harm from particulate matter exposure 

suffered by the overall population.30 EPA must open reconsideration proceedings in order to 

fully evaluate these significant negative public health impacts unaddressed in the current 

particulate matter NAAQS. 

                                                           
30 Kevin A. Matthews, et al., Racial and Ethnic Estimates of Alzheimer’s Disease and Related 
Dementias in the United States (2015–2060) in Adults Aged ≥ 65 Years, 15 ALZHEIMER’S & 
DEMENTIA 17-24, (Jan. 2019), available at: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333531/. 
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The new studies also present further evidence that EPA’s decision will only exacerbate 

existing environmental injustices. As the pandemic enters its second year, COVID-19 has been 

shown to have a devastating impact on the very same disadvantaged communities already 

struggling from high particulate matter exposure.31 Similarly, Alzheimer’s disease and related 

dementias also disproportionately impact the Black and Latinx populations, compared to the 

non-Hispanic White population.32 In accordance with President Biden’s recent Executive Order 

committing to address environmental justice33 and the longstanding disproportionate impacts 

federal policies have on historically marginalized and overburdened BIPOC communities, EPA 

should convene reconsideration proceedings in order to address the environmental injustice 

created by disproportionate exposure to particulate matter.   

RELIEF REQUESTED 

For the foregoing reasons, State Petitioners respectfully request that the Administrator 

immediately convene proceedings for reconsideration of the final action. 42 U.S.C. 

§ 7607(d)(7)(B).  

                                                           
31 Gregorio A. Millett MPH, et al., Assessing Differential Impacts of COVID-19 on Black 
Communities, 47 Annals of Epidemiology 37-44 (Jul. 2020), available at: 
https://doi.org/10.1016/j.annepidem.2020.05.003. 
32 Kevin A. Matthews et al., supra note 30, at 17-24. 
33 See Executive Order on Tackling the Climate Crisis at Home and Abroad (Jan. 27, 2021) 
(“Agencies shall make achieving environmental justice part of their missions by developing 
programs, policies, and activities to address the disproportionately high and adverse human 
health, environmental, climate-related and other cumulative impacts on disadvantaged 
communities, as well as the accompanying economic challenges of such impacts.”) Available at: 
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-
tackling-the-climate-crisis-at-home-and-abroad/. 



20 

Dated:  February 16, 2021 
 

Respectfully Submitted, 
FOR THE STATE OF CALIFORNIA 
 
XAVIER BECERRA 
Attorney General of California 
ROBERT W. BYRNE 
Senior Assistant Attorney General 
DAVID A. ZONANA 
Acting Senior Assistant Attorney General 
MYUNG J. PARK 
Supervising Deputy Attorney General 
JONATHAN A. WIENER 
SPARSH KHANDESHI 
COREY MOFFAT 
Deputy Attorneys General 
 
/s/ Scott J. Lichtig 
SCOTT J. LICHTIG 
Deputy Attorney General 
1300 I Street 
Sacramento, CA 95814 
Tel: (916) 210-7815 
Scott.Lichtig@doj.ca.gov 
 
Attorneys for Petitioner State of California, 
by and through its Attorney General Xavier 
Becerra, and California Air Resources Board 



21 

FOR THE STATE OF CONNECTICUT 
 
WILLIAM TONG 
Attorney General of Connecticut 
 
/s/ Jill Lacedonia 
JILL LACEDONIA 
Assistant Attorney General 
Office of the Attorney General 
165 Capitol Avenue 
Hartford, CT 06106 
(860) 808-5250 
Jill.Lacedonia@ct.gov 
Counsel for the State of Connecticut 
 
 
 
FOR THE STATE OF ILLINOIS 
 
KWAME RAOUL 
Attorney General of Illinois 
 
/s/ Daniel I. Rottenberg 
MATTHEW J. DUNN 
Chief, Environmental Enforcement/Asbestos 
Litigation Division 
DANIEL I. ROTTENBERG 
Assistant Attorney General  
Office of the Attorney General 
69 W. Washington St., 18th Floor  
Chicago, IL 60602 
(312) 814-3816 
DRottenberg@atg.state.il.us  
Counsel for the State of Illinois 

FOR THE STATE OF DELAWARE 
 
KATHLEEN JENNINGS 
Attorney General of Delaware 
 
/s/ Christian Douglas Wright 
CHRISTIAN DOUGLAS WRIGHT 
Director of Impact Litigation 
VALERIE EDGE 
Deputy Attorney General 
Delaware Department of Justice 
102 W. Water Street, 3rd Floor 
Dover, DE 19902 
(302) 257-3219 
Christian.Wright@delaware.gov 
Counsel for the State of Delaware 
 
FOR THE STATE OF MARYLAND 
 
BRIAN E. FROSH 
Attorney General of Maryland 
 
/s/ Joshua M. Segal 
JOSHUA M. SEGAL 
Special Assistant Attorney General 
Office of the Attorney General 
200 St. Paul Place 
Baltimore, MD 21202 
(410) 576-6446 
jsegal@oag.state.md.us 
Counsel for the State of Maryland 



22 

FOR THE COMMONWEALTH OF 
MASSACHUSETTS 

 
MAURA HEALEY 
Attorney General of Massachusetts 
 
/s/ Megan M. Herzog 
CHRISTOPHE COURCHESNE 
Assistant Attorney General and Deputy Chief 
TURNER SMITH 
Assistant Attorney General 
MEGAN M. HERZOG 
Special Assistant Attorney General 
Energy and Environment Bureau 
Office of the Attorney General 
One Ashburton Place, 18th Fl. 
Boston, MA 02108 
(617) 727-2200 
turner.smith@mass.gov  
Counsel for the Commonwealth of 
Massachusetts 
 
 
FOR THE STATE OF NEW JERSEY 
 
GURBIR GREWAL  
Attorney General of New Jersey 
 
/s/ Daniel Resler 
DANIEL RESLER 
Deputy Attorney General 
Division of Law 
R.J. Hughes Justice Complex 
25 Market Street, P.O. Box 093 
Trenton, NJ 08625 
Tel: (609) 376-2735 
Email: Daniel.Resler@law.njoag.gov  
Counsel for the State of New Jersey 
 
 

FOR THE STATE OF MINNESOTA 
 
KEITH ELLISON 
Attorney General of Minnesota 
  
/s/ Leigh K. Currie 
LEIGH K. CURRIE 
Special Assistant Attorney General 
Minnesota Office of the Attorney General 
445 Minnesota Street Suite 900 
Saint Paul, MN 55101 
(651) 757-1061 
peter.surdo@ag.state.mn.us 
Counsel for the State of Minnesota 
 
 
 
 
 
 
 
 
 
FOR THE STATE OF NEW YORK  
 
LETITIA JAMES 
Attorney General of New York 
 
/s/ Andrew G. Frank 
MICHAEL J. MYERS 
Senior Counsel  
NICHOLAS C. BUTTINO 
ANDREW G. FRANK 
Assistant Attorneys General  
LINDA M. WILSON 
Staff Scientist 
New York State Attorney General Office  
28 Liberty Street 
New York, New York 10005  
(212) 416-8271 
Nicholas.Buttino@ag.ny.gov  
Counsel for the State of New York 
 



23 

FOR THE CITY OF NEW YORK 
 
JAMES E. JOHNSON 
Corporation Counsel for the City of New York 
 
/s/ Christopher Gene King 
Christopher Gene King 
Senior Counsel 
New York City Law Department 
100 Church Street 
New York, NY 10007 
(917) 941-5603 
cking@law.nyc.gov 
Counsel for the City of New York 
FOR THE STATE OF OREGON  
 
 
 
 
FOR THE COMMONWEALTH OF PENNSYLVANIA 
 
JOSH SHAPIRO 
Attorney General of Pennsylvania 
 
/s/ Ann Johnston 
ANN JOHNSTON 
Senior Deputy Attorney General 
MICHAEL J. FISCHER 
Chief Deputy Attorney General   
Office of Attorney General  
Strawberry Square, 14th Floor  
Harrisburg, Pennsylvania 17120 
(717) 705-6938 
ajohnston@attorneygeneral.gov 
Counsel for the Commonwealth of 
Pennsylvania 

ELLEN F. ROSENBLUM  
Attorney General of Oregon  
 
/s/ Paul Garrahan  
PAUL GARRAHAN  
Attorney-in-Charge  
STEVE NOVICK  
Special Assistant Attorney General  
Natural Resources Section  
Oregon Department of Justice  
1162 Court Street NE  
Salem, OR 97301-4096  
(503) 947-4593  
paul.garrahan@doj.state.or.us 
steve.novick@doj.state.or.us 
Counsel for the State of Oregon 
 
 
 
FOR THE STATE OF RHODE ISLAND  
 
PETER F. NERONHA 
Attorney General of Rhode Island 
 
/s/ Gregory S. Schultz 
GREGORY S. SCHULTZ  
Special Assistant Attorney General 
Rhode Island Office of Attorney General 
150 South Main Street 
Providence, RI 02903 
(401) 274-4400 
gschultz@riag.ri.gov 
Counsel for the State of Rhode Island 
 
 
 
 



24 

 
FOR THE STATE OF VERMONT 
 
THOMAS J. DONOVAN, JR. 
Attorney General of Vermont 
 
/s/ Nicholas F. Persampieri 
NICHOLAS F. PERSAMPIERI 
Assistant Attorney General 
Office of the Attorney General 
109 State Street 
Montpelier, VT 05609 
(802) 828-3171 
nick.persampieri@vermont.gov 
Counsel for the State of Vermont 
 
 
 
 
 
FOR THE STATE OF WASHINGTON 
 
ROBERT W. FERGUSON  
Attorney General of Washington 
 
/s/ Christopher H. Reitz 
CHRISTOPHER H. REITZ 
Assistant Attorney General 
Office of the Attorney General 
P.O. Box 40117 
Olympia, Washington 98504-0117 
(360) 586-4614 
chris.reitz@atg.wa.gov 
Counsel for the State of Washington 
 
 

 
FOR THE COMMONWEALTH OF VIRGINIA 
 
MARK R. HERRING 
Attorney General of Virginia 
 
/s/ Caitlin C. G. O’Dwyer 
PAUL KUGELMAN, JR.  
Senior Assistant Attorney General,  
Chief, Environmental Section 
CAITLIN C. G. O’DWYER 
Assistant Attorney General 
Office of the Attorney General 
202 North 9th Street 
Richmond, Virginia 23219 
(804) 786-1780 
godwyer@oag.state.va.us  
Counsel for the Commonwealth of Virginia 
 
 
FOR THE STATE OF WISCONSIN 
 
JOSHUA L. KAUL 
Attorney General of Wisconsin 
 
/s/ Lorraine C. Stoltzfus 
LORRAINE C. STOLTZFUS 
EMILY M. ERTEL 
Assistant Attorneys General 
Wisconsin Department of Justice 
Post Office Box 7857 
Madison, WI 53707-7857 
(608) 266-9226 
stoltzfuslc@doj.state.wi.us 
Counsel for the State of Wisconsin 
 
 



Journal Pre-proof

A National Difference in Differences Analysis of the Effect of PM2.5 on Annual Death
Rates

Joel Schwartz, Yaguang Wei, Ma’ayan Yitshak-Sade, Qian Di, Francesca Dominici,
Antonella Zanobetti

PII: S0013-9351(20)31546-2

DOI: https://doi.org/10.1016/j.envres.2020.110649

Reference: YENRS 110649

To appear in: Environmental Research

Received Date: 10 November 2020

Revised Date: 16 December 2020

Accepted Date: 17 December 2020

Please cite this article as: Schwartz, J., Wei, Y., Yitshak-Sade, M.’a., Di, Q., Dominici, F., Zanobetti,
A., A National Difference in Differences Analysis of the Effect of PM2.5 on Annual Death Rates,
Environmental Research, https://doi.org/10.1016/j.envres.2020.110649.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.envres.2020.110649
https://doi.org/10.1016/j.envres.2020.110649


1 
 

A National Difference in Differences Analysis of the Effect of PM2.5 on Annual 

Death Rates 

 

Joel Schwartz1,2,Yaguang Wei1, Ma’ayan Yitshak-Sade1,3, Qian Di1,4, Francesca Dominici5, Antonella 

Zanobetti1 

1. Department of Environmental Health, Harvard TH Chan School of Public Health 

2. Department of Epidemiology, Harvard TH Chan School of Public Health 

3. Department of Environmental Medicine, Mount Sinai School of Medicine 

4. Vanke School of Public Health, Tsinghua University, Beijing, China 

5. Department of Biostatistics, Harvard TH Chan School of Public Health 

Address communications to: 

Joel Schwartz        joel@hsph.harvard.edu. 401 Park Drive, Suite 404H, Boston MA 02215.  

 

 

 

  



2 
 

AbstractAbstractAbstractAbstract    

Many studies have reported that PM2.5 was associated with mortality, but these were criticized for 

unmeasured confounding, not using causal modeling, and not focusing on changes in exposure 

and mortality rates. Recent studies have used propensity scores, a causal modeling approach that 

requires the assumption of no unmeasured confounders.  

We used differences in differences, a causal modeling approach that focuses on exposure changes, 

and controls for unmeasured confounders by design to analyze PM2.5 and mortality in the U.S. 

Medicare population, with 623,036,820 person-years of follow-up, and 29,481,444 deaths. We 

expanded the approach by clustering ZIP codes into 32 groups based on racial, behavioral and 

socioeconomic characteristics, and analyzing each cluster separately. We controlled for multiple 

time varying confounders within each cluster. A separate analysis examined participants whose 

exposure was always below 12 µg/m3.We found an increase of 1 µg/m3 in PM2.5 produced an 

increased risk of dying in that year of 3.85x10-4 (95% CI 1.95 x10-4, 5.76 x10-4 ). This corresponds to 

14,000 early deaths per year per 1 µg/m3. When restricted to exposures below 12 µg/m3, the 

increased mortality risk was 4.26 x10-4 (95% CI 1.43x10-4, 7.09 x10-4). Using a causal modeling 

approach robust to omitted confounders, we found associations of PM2.5 with increased death rates, 

including below U.S. and E.U. standards.  

Key words: Air pollution, PM2.5, causal, difference in differences, mortality 
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1. Introduction 

The Clean Air Act requires the US Environmental Protection Agency (EPA) to set National 

Ambient Air Quality Standards (NAAQS) to protect vulnerable populations with an adequate 

margin of safety. Many studies have reported associations of PM2.5 and mortality and morbidity 

following long and short-term exposure(Abu Awad et al., 2019; Beelen et al., 2014; Crouse et al., 

2015; Di et al., 2017; Hoek et al., 2013; Pinault et al., 2016; Pope et al., 2019; Vodonos et al., 

2018). These were undertaken by many investigators with over 50 cohorts in the most recent PM2.5 

meta-analysis(Vodonos et al., 2018), and have resulted in EPA sequentially tightening the PM2.5 

standard. The global burden of disease ranks air pollution among the largest public health risks.  

Recent studies have reported associations between PM2.5 and mortality at concentrations below the 

2012 U.S. EPA NAAQS or World Health Organization air quality guidelines(Di et al., 2017; 

Wang et al., 2016; Yang et al., 2012). However, some have criticized many of these studies for not 

using causal modeling approaches.  

Causal modeling methods can aid in assessing causality. The general approach is to try to make an 

observational study closely mimic a randomized trial. In addition, causal methods provide marginal 

estimates of the effects of exposure,  that do not depend on the distribution of the covariates in the 

study population(Imai and van Dyke, 2004). A common approach is to use propensity score 

matching or inverse probability weighting to make the exposure independent of all measured 

confounders(Baccini et al., 2017; Rubin, 1997). Recent studies have used that approach to 

examine the association of PM2.5 with mortality, and provided robust findings(Abu Awad et al., 

2019; Schwartz et al., 2018; Wei et al., 2020; Wu et al., 2020; Yitshak-Sade et al., 2019). However, 

propensity scores only control for measured confounders, and therefore do not address the 
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argument that there is unmeasured confounding. Hence it is important to complement that 

approach using methods that can address unmeasured confounders.  

Approaches that control for unmeasured confounders by design include difference-in-differences 

(DID) analyses (Wang et al., 2016; Yitshak-Sade et al., 2019). In a classical DID model, the mean 

response is calculated for the exposed and non-exposed groups in pre-exposure and post-exposure 

periods. Since all slowly varying predictors of outcome such as socioeconomic status (SES), 

smoking, obesity, etc. are the same in each group in both periods, the difference between 

outcomes in the two periods in the exposed group cannot be confounded by those variables. The 

difference between pre-exposure and post-exposure periods in the unexposed group is a negative 

outcome control for the difference in the exposed group. It controls for changes in an outcome 

due to covariates that can change between periods similarly between the two locations. The 

difference in these pairs of differences is a causal estimate, assuming that no other exposure has 

affected the two groups differently over time(Donald and Lang, 2007). Because the DID approach 

examines the effect of changes in exposure (post vs pre periods) on change in outcome, it is 

precisely the type of study that EPA’s CASAC says it prefers. The method has been generalized to 

look at more than two locations, more than two time periods, and continuous, time varying 

exposures(Wang et al., 2016).  With multiple locations time-invariant omitted confounders are 

controlled using an indicator variable for each location. However, it still require the assumption 

that changes in mortality rates by year due to changing risk factors are common across locations. 

Here we simultaneously adopt two approaches to relax that assumption, and hence strengthen the 

evidence for causality. We apply them to assess whether changes in PM2.5 are associated with 

changes in mortality rates in a national cohort of Medicare participants in the U.S. In addition, as 
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few previous cohort studies have controlled for temperature, we adjusted for mean warm season 

and mean cold season temperature.  

2.0 2.0 2.0 2.0 Data and MethodsData and MethodsData and MethodsData and Methods    

2.1 Medicare cohort 

We obtained the Medicare beneficiary denominator file, which contains information on all 

Medicare participants in the U.S., from the Centers for Medicare and Medicaid 

Services(RESDAC, 2018). We followed all beneficiaries’ ≥65 years in the contiguous U.S. from 

2000 to 2016. Medicare insurance covers over 95% of the population ≥65 years of age in the 

United States. Medicare participants alive on January 1 of the year following their enrollment in 

Medicare entered the open cohort, and follow-up periods were calendar years. For the DID 

analysis, we computed an annual mortality rate in each ZIP code, in each group stratified by age 

(>84 or not), sex, race, and Medicaid coverage. This study was approved by the human subjects 

committee at the Harvard T. H. Chan School of Public Health. 

2.2 Covariates  

From the Medicare denominator file for each calendar year, we obtained the age, sex, race, ZIP 

code of residence for that year, eligibility for Medicaid for that year, and date of death (or 

censoring) of each participant. Age, ZIP code, and Medicaid eligibility were updated annually. This 

file is publicly available from the Centers for Medicare and Medicaid Services(RESDAC, 2018). 

We obtained small area–level social, economic, and housing characteristic variables from the U.S. 

Census Bureau 2000 and 2010 Census Summary File 3(Bureau, 2010) at the ZIP code tabulation–

area level (ZCTA) and the American Household Survey for each year after 2010. These included 

percent of people ≥ 65 living in poverty, median household income, median house value, percent 
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of owner occupied homes, percent black, percent Hispanic, population density, and education. 

We updated these variables for missing years by linearly extrapolating between the measured years. 

In addition, the county-level percentage of people who ever smoked and their mean body mass 

index (BMI) were obtained from the CDC Behavioral Risk Factor Surveillance survey(CDC, 2013) 

, which were then assigned to each ZCTA within the county and updated each year. From the 

Dartmouth Health Atlas, we obtained percentage of Medicare participants who had a hemoglobin 

A1c test, a low-density lipoprotein cholesterol (LDLC) test, a mammogram, an eye exam, and a 

visit to an annual checkup for each year in each hospital catchment area and assigned it to all 

ZCTAs in that area(Wennberg and Cooper, 1996). We also computed the distance from each ZIP 

code centroid to the nearest hospital.  To capture long-term smoking history of Medicare 

participants in each ZIP code, we computed their hospitalization rate for lung cancer by ZIP code 

for each year. This risks over-control because air pollution has been associated with increased risk 

of lung cancer. To capture year-to-year changes in mortality rates due to temperature, we 

downloaded daily temperature data on a 12km grid from the NASA NLDAS-2 website 

(https://ldas.gsfc.nasa.gov/index.php/nldas/v2/models).  We averaged all grid cells within the 

boundaries of a ZIP code, and constructed two measures for each year, the average temperature in 

the warm months (April-September) and in the cold months (October-March).  

2.3 Exposure assessment 

We estimated exposure using a validated prediction model calibrated to measurements at almost 

2000 monitoring stations using an ensemble of machine learners that provided daily estimates for a 

1km grid of the contiguous U.S.(Di et al., 2019; Di et al., 2020). In brief, the model used data 

from multiple sources including predictions of chemical transport models (GEOS-Chem, CMAQ, 

and MERRA-2), meteorological data, land-use terms, and satellite-based measures of aerosol 
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optical depth, surface reflectance, and absorbing aerosol index. We trained a neural network, a 

random forest, and a gradient boosting machine to monitoring data from the United States 

Environmental Protection Agency (EPA) Air Quality System to generate daily predictions on a 1×1 

km grid. The models were fit using data from all years. The three predictions for PM2.5 were 

combined in a nonlinear geographically weighted regression. The model showed good 

performance with ten-fold cross validation on held out monitoring sites yielding an out of sample 

R2 of 0.89 for annual average predictions of PM2.5. Penalized splines showed linear relationships 

between observed and predicted PM2.5 from 0 to 60 µg/m3. Predictions for all grid cells whose 

centroids were inside the ZIP code boundary were averaged for each year and assigned to 

participants in that ZIP code in that year.  

2.4 Statistical analysis 

The standard DID estimator for a continuous predictor posits that  

�(���) = �	 + ���
�.� + ���� + ����     (1) 

where ��� is the mortality rate in ZIP code � in demographic group (by age >84 or not, sex, race, 

and Medicaid coverage) �, �� are the time-invariant or slowly changing confounders in ZIP code �, 

�� are the time varying confounders that are common across ZIP codes. The �� are controlled by 

fitting individual intercepts for each ZIP code. The time varying confounders are removed by 

fitting a nonlinear time trend; we used a natural spline function of year with 3 degrees of freedom, 

yielding: 

������ = �	 + ���
�.� + �� + ��(����, 3)    (2) 

where �� is a dummy variable for each ZIP Code. Since ZIP code is controlled, this model 

compares year-to-year variations around ZIP code average PM2.5 and common time trend to year-
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to-year variations of mortality rates about ZIP code average and common time trend. Differences 

in e.g. SES, smoking, or diabetes between ZIP code are removed by the dummy variable for ZIP 

code. For a causal interpretation of the DID estimate to hold, we must assume that all the ZIP 

codes have parallel long-term time trends in mortality rates, other than those caused by different 

time trends in PM2.5.  

If covariates producing different time trends in mortality rate by ZIP code are not correlated with 

ZIP code specific PM2.5 trends, the interpretation still holds. It would be preferable to further 

weaken this assumption.  

We added two methods to relax the parallel trends assumption, and combined them in our 

analysis. We added to equation (2) terms for confounders that we have measured that change over 

time, possibly differentially by ZIP code. This will control for any temporal trends due to changes 

in these covariates, which include the SES, race, demographic, behavioral, and health access 

variables described above. Second, we grouped ZIP codes based on the above covariates and fit 

separate time trends in each group. We think that ZIP codes that are similar in racial composition, 

percent living below the poverty level, population density, smoking rates etc. are more likely to 

have similar time trends in mortality rates than disparate ZIP codes. To accomplish this, we fit a 

principal component analysis to all the listed potential confounders and took the first 5 principal 

components. We classified each ZIP code into whether it was higher or lower than average on 

each of the 5 components, producing 32 categories of ZIP codes. In each of these 32 categories of 

ZIP codes, we fit separate splines for time trend and separate control for all of the covariates. This 

controls for time trends in measured covariates such as racial composition, median income, etc, 

and fits 32 separate time trends to the data to capture any trends unexplained by time trends in the 

measured covariates. It also allows the effects of the measured covariates to differ by the 32 
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different groups. In addition by performing analyses stratified by the 32 different groups we are 

also controlling by matching for the covariate clusters (e.g. SES and race) that characterize each 

group. Combining these, the final modeling approach is to fit 32 models (k=1:32) and meta-analyze 

the 32 values of β1.  

����� , "� = �	 + ��#�
25 + �� + ��# + ��(����, 3, ") + ����#  (3) 

Here �� are indicator variables for each ZIP code, ��# are the time varying covariates whose time 

trends may differ by ZIP code and by which group (k) the ZIP code is in, ��(����, 3, ") is a 

natural spline for time trend with 3 degrees of freedom for each group ", and ��# is an indicator 

variable for each age-race-sex-Medicaid stratum in group ". Results were combined over strata 

using a random effects meta-analysis.  

Finally, equation (3) embodies an additive, rather than multiplicative model for the rate of 

mortality in each ZIP code-demographic group. This allows us to estimate the additive effect of 

PM2.5 on the probability of dying, provides more interpretative interaction terms, and provides a 

marginal effect estimate (i.e. not dependent on the distribution of the covariates, as a multiplicative 

model would be). Additive probability or rate models give unbiased estimates of effect just as the 

more usual logistic models, but biased estimates of standard errors(Caudill and Jackson, 1989). 

Therefore have used robust standard errors to estimate the confidence intervals. In a second 

analysis, we reran the analysis on data restricted to persons whose exposure was always below 12 

µg/m3, the U.S. standard for PM2.5.  

3.03.03.03.0 ResultsResultsResultsResults    

Table 1 shows the characteristics of the Medicare cohort between 2000 and 2016. There were 

623,036,820 person-years of follow-up during the study, and 29,481,444 deaths.  85.4% of the 
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participants were white, and 12.9% were covered by Medicaid, which provides additional benefits 

to the poor. The mean PM2.5 during the study was 10.3 µg/m3.  

Table 1Table 1Table 1Table 1    

Variable Values 

YearYearYearYear     

     Mean (SD) 2009.5 (4.90) 

     Median [25%, 75%] 2010 [2004, 2013] 

MaleMaleMaleMale    42.8 %  

RaceRaceRaceRace     

     Black 8.4%  

     Other 6.2%  

     White 85.4%  

Age > 84Age > 84Age > 84Age > 84    13.2% 

Medicaid CoverageMedicaid CoverageMedicaid CoverageMedicaid Coverage    12.9% 

ZIP Code CovariatesZIP Code CovariatesZIP Code CovariatesZIP Code Covariates     

Median IncomeMedian IncomeMedian IncomeMedian Income     

     Mean (SD) $53,177 ($22,082) 

     Median [25%, 75%] $47,998 [$38,030, $63,031] 
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Median House ValueMedian House ValueMedian House ValueMedian House Value     

     Mean (SD) $200,139 ($159,728) 

     Median [25%, 75%] $150,400 [$98,600, $240,300] 

Percent ZIP code BlackPercent ZIP code BlackPercent ZIP code BlackPercent ZIP code Black     

     Mean (SD) 11% (17.9%) 

     Median [25%, 75%] 3.7% [1.1%, 12.0%] 

Percent ZIP code HispanicPercent ZIP code HispanicPercent ZIP code HispanicPercent ZIP code Hispanic     

     Mean (SD) 12.6% (16.4%) 

     Median [25%, 75%] 5.3% [2.1%, 14.6%] 

Percent >65 below poverty  Percent >65 below poverty  Percent >65 below poverty  Percent >65 below poverty       

     Mean (SD) 9.5% (6.5%) 

     Median [25%, 75%] 7.9% [5.3%, 11.8%] 

Percent Low EducationPercent Low EducationPercent Low EducationPercent Low Education     

     Mean (SD) 25.3% (14.7%) 

     Median [25%, 75%] 22.6% [14.2%, 33.7%] 

Percent with annual MammogramPercent with annual MammogramPercent with annual MammogramPercent with annual Mammogram     

     Mean (SD) 63.7% (7.2%) 

     Median [25%, 75%] 63.9% [59.2%, 68.2%] 
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Percent with ambulatory VisitPercent with ambulatory VisitPercent with ambulatory VisitPercent with ambulatory Visit     

     Mean (SD) 77.8% (6.2%) 

     Median [25%, 75%] 79.0% [74.4%, 82.1%] 

Population Density Population Density Population Density Population Density (persons/mi2)  

     Mean (SD) 3397 (9032) 

     Median [25%, 75%] 967 [167, 3353] 

Percent Owner OccupiedPercent Owner OccupiedPercent Owner OccupiedPercent Owner Occupied     

     Mean (SD) 68% (16%) 

     Median [25%, 75%] 70.8% [59.8%, 79.2%] 

Mean BMI (kg/mMean BMI (kg/mMean BMI (kg/mMean BMI (kg/m2222))))     

     Mean (SD) 27.5 (1.58) 

     Median [25%, 75%] 27.3 [26.7, 28.0] 

Distance to nearest hospital Distance to nearest hospital Distance to nearest hospital Distance to nearest hospital (km)(km)(km)(km)     

     Mean (SD) 6.5 (7.4) 

     Median [25%, 75%] 3.90 [1.98, 8.07] 

Ever SmokerEver SmokerEver SmokerEver Smoker     

     Mean (SD) 46.2% (6.8%) 

     Median [25%, 75%] 46.2% [41.8%, 50.4%] 
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Percent annual HbA1c test Percent annual HbA1c test Percent annual HbA1c test Percent annual HbA1c test      

     Mean (SD) 83.1% (4.9%) 

     Median [25%, 75%] 83.7% [80.5%, 86.3%] 

Lung Cancer Rate (x 10Lung Cancer Rate (x 10Lung Cancer Rate (x 10Lung Cancer Rate (x 10----4444))))     

     Mean (SD) 3.9 (2.8) 

     Median [25%, 75%] 3.3 [1.9, 4.9] 

Percent annual LDLPercent annual LDLPercent annual LDLPercent annual LDL     

     Mean (SD) 79.5% (6.2%) 

     Median [25%, 75%] 80.1% [76.1%, 83.5%] 

Percent Annual Eye ExamPercent Annual Eye ExamPercent Annual Eye ExamPercent Annual Eye Exam     

     Mean (SD) 67.4% (6.4%) 

     Median [25%, 75%] 67.1% [63.9%, 71.0%] 

PMPMPMPM2.52.52.52.5    (µg/m(µg/m(µg/m(µg/m3333))))     

     Mean (SD) 10.3  (3.1) 

     Median [25%, 75%] 9.8 [7.9, 12.0]  
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In the meta-analysis of the results of the 32 strata-specific DID analyses, we found that the 

probability of dying in each year increased by 3.85x10-4 (95% CI 1.95 x10-4 , 5.76 x10-4 ) for each 1 

µg/m3 increment in PM2.5 in that year. The I2 statistic for heterogeneity was 42%. When we 

restricted our analysis to persons whose exposure was always below 12 µg/m3 during the follow-up 

period, we found a larger effect size, with the probability of dying in each year increased by 4.26 

x10-4 (95% CI 1.43x10-4, 7.09 x10-4) per 1 µg/m3 increase in PM2.5. Interaction terms for male gender, 

age > 84, and race were fit in the full data. Sex was a significant modifier (p for interaction <0.001), 

with larger effects in males ( 6.81x10-4, 95% CI 4.14x10-4 , 9.48x10-4 ) then females(1.20x10-4, 95% 

CI -8.80x10-5, 3.29x10-4). These results are shown in Figure 1. There was no interaction by age. 

Interaction models for race did not converge because residential segregation in the U.S. resulted in 

groups with too few Blacks or Asians and other races. Instead, we reran the analysis without 

separate models for each of the 32 groups. There was no significant interaction by race.   
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4.0 4.0 4.0 4.0 DiscussionDiscussionDiscussionDiscussion    

Using a difference in differences design applied to a linear rate model, we found that each 1 µg/m3 

increment in PM2.5 was associated with a 3.85 x10-4 increase in the probability of dying in a given 

year. If the difference in differences assumptions are met, this is a causal increase. We believe they 

are met for the following reasons. First, since this design controls for each ZIP code, all individual 

and neighborhood level confounders that change little over time are controlled, whether measured 

or not. This includes most of the variables (e.g. SES, smoking history, diet) that have be posited as 

potential confounders. Consequently, only time varying factors can be confounders. Second, we 

controlled for potential confounding in each ZIP code due to time trends in median household 

income, median home value, percent owner occupied housing, percent of ZIP code that is Black, 

percent of households that are Hispanic, percent of persons aged 65 or older living in poverty, 

smoking rate, BMI, Medicaid eligibility, educational attainment, population density, lung cancer 

rates, multiple measures of the adequacy of medical care, and summer and winter temperature. 

Third, we grouped the ZIP codes by these factors, and fit separate nonlinear time trends within 

each of 32 groups to capture any remaining time trends due to omitted confounders could differ 

between groups, but would be similar within group.  This approach effectively looks at the within 

ZIP code fluctuations in exposure around the ZIP code mean, trend due to measured time-varying 

covariates, and common trends by group of ZIP codes. It compares that to the same deviation in 

mortality.  Such an approach, looking at yearly deviations from trend and ZIP code mean in 

exposure and outcome, is inherently examining the relationship of changes in exposure to changes 

in outcome. This also addresses the issue of whether previous studies effects are due to primarily 

recent exposure, or reflect long term exposure, including when pollution concentrations were 
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higher. The dummy variable for each ZIP code controls for long term exposure at that ZIP code, 

and the removal of nonlinear time trends during the period under study focuses the exposure 

variable on the year of the death. EPA Regulatory Impact Analyses spread the estimated mortality 

effects out over a 20 year period. This study provides an estimate of immediate impact. Because 

our study incorporates 17 years of follow-up, each year has a new exposure, and a new effect.    

 In addition this paper adds to the sparse literature controlling for temperature in studies of long-

term exposure to air pollution, which some have argued is an important confounder. Further, we 

estimated the probability of dying in a year, which is more easily interpretable than an 

instantaneous hazard rate, and by using an additive rather than multiplicative model we estimated 

the marginal effect if PM2.5, not the conditional effect estimated by Cox’s proportionate hazard 

model.  This allows one to estimate attributable deaths in health impact assessments without 

making further, possibly implausible assumptions required when using a conditional estimate.  

Some scientists, including the current chair of EPA’s Clean Air Scientific Advisory Committee 

(CASAC), assert that studies using standard epidemiological methods should be given little weight 

in revising the NAAQS, and propose restricting to studies using causal methods, and particularly 

ones showing changes in air quality are associated with changes in mortality(CASAC, 2019). The 

recent meetings of EPA’s CASAC highlighted the importance of these issues(CASAC., 2019). 

Their main criticism is that traditional approaches only show associations that may be confounded, 

vary depending on modeling approaches, and do not inform causality, which can only be 

addressed by causal methods. They also emphasize that unmeasured variables, particularly 

individual characteristics, socioeconomic status, and temperature may confound the published 

literature.(Cox and Popken, 2015) EPA recently proposed not tightening the NAAQS for PM2.5, 

relying on these arguments. This paper provides an analysis using a causal method, controlling for 
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temperature and socioeconomic status, and all individual and area level potential confounders, 

measured or unmeasured, that vary slowly over time.  

That  EPA proposal also asserted there was insufficient evidence of a causal association at lower 

levels. When we restricted our analysis to include only persons who never experienced 

concentrations above 12 µg/m3 during 17 years of follow-up we found a somewhat larger effect 

estimate of 4.26 x10-4 (95% CI 1.43x10-4, 7.09 x10-4) per 1 µg/m3 increase in PM2.5..5. This indicates 

that the current U.S. and E.U. standards are not sufficient to protect public health, and that the 

WHO standard of 10 µg/m3 is unlikely to protect public health. 

Other studies have applied causal modeling methods to air pollution, primarily propensity score 

methods(Abu Awad et al., 2019; Schwartz et al., 2018; Wang et al., 2017; Wei et al., 2020; Wu et 

al., 2020; Yitshak-Sade et al., 2019). These methods use the relationship between exposure and 

confounders to render the exposure independent of all of the measured confounders, and hence 

mimic a randomized trial. They have all reported that PM2.5 increases mortality rates. The 

difference in differences approach complements those studies by its ability to deal with 

unmeasured confounders. All personal and small area time invariant or slowly varying confounders 

are removed by design, whether measured or not. All confounders whose time trends are due to 

measured time-varying confounders or similar within groups defined by race, SES, medical access, 

and behavioral characteristics are controlled whether measured or not. Hence, this paper adds 

assurance about many possible unmeasured confounders to the large literature of associational 

studies and smaller literature of propensity score-based models that provide causal estimates. 

Together, they provide strong evidence for a causal effect of PM2.5 on mortality rates.  

 Since we estimate the probability of dying in each year and not a hazard rate, our effect sizes are 

not directly comparable to the other causal modeling studies. Compared to the larger literature, a 
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recent meta-analysis of then extant cohort studies estimated the effect size at 10 μg/m3  (the mean 

concentration in this study) as a 1.29% increase in the rate per μg/m3 increase in PM2.5, (95% CI 

1.09%, 1.50%)(Vodonos et al., 2018).The annual mortality rate in the Medicare cohort was 4.7x10-

2. A 1.29% increase in that rate is an additive increase of 6.1x10-4. The results from a previous Cox 

regression analysis of the Medicare cohort from 2000-2012 translate to an additive increase of 

3.4x10-4.  These are similar to our results. Hence these other studies are unlikely to have been 

confounded by temperature, or slowly varying SES, racial, and behavioral factors which this study 

controlled for.  

 

Nor are these effects small. Multiplying our effect estimates by the total person-years in the 

Medicare cohort, we estimate that had everyone had 1 µg/m3 lower exposure, 239,900 early deaths 

would have been avoided during the follow-up period. EPA’s National Contingency Plan (40 

C.F.R. § 300.430(d)(1)) states that the range of acceptable liflifliflifetime risksetime risksetime risksetime risks (of developing cancer) for 

carcinogens should be set between 1 in 10,000 and 1 in a million over a 70-year lifetime. Thus, 

when EPA considers regulations for carcinogens, it typically regulates if lifetime riskslifetime riskslifetime riskslifetime risks exceed 1 in a 

hundred thousand. In contrast, 1 µg/m3 of exposure below the current EPA standard for only 1 

year results in an increased risk of dying of 4.26 per ten thousand in our study.  

Our finding has limitations. First, DID analyses depend on the change over time in other ZIP 

codes with different changes in PM2.5 to serve as controls for changes over time in outcome that 

may have occurred independent of exposure. If the time trends in the ZIP codes are different, this 

control will fail. We have dealt with this by controlling for time trends in measured covariates and 

grouping ZIP codes into 32 groups that are similar on age, sex, race/ethnicity, SES, and access to 

medical care, and doing the analysis separately within each group, arguing that the time trends in 
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mortality rates will be similar within group. However, we cannot exclude the possibility that they 

are not. Second, our exposure estimates are not perfect. While an out of sample R2 of 0.89 is high, 

there is still some exposure error, which may bias estimates. In addition, personal exposure within 

a neighborhood varies around the neighborhood ambient concentration. However, we believe 

most of that difference is likely to be Berksonian error, and hence not bias coefficients. Moreover, 

the principle reason for the differences between ambient and personal exposure are behavioral 

(more driving, more cooking, etc), and incorporating exposure related to those factors would 

require controlling for other related risk factors (e.g. stress from driving) that are not confounders 

of the neighborhood ambient concentrations. Hence, this exposure error is beneficial from the 

point of view of reducing confounding, as has been pointed out previously(Weisskopf and 

Webster, 2017).  

In conclusion, we have found an effect of PM2.5 on daily deaths using a causal modeling approach 

robust to unmeasured confounders. The effect size is similar to those reported in associational 

studies, suggesting that unmeasured confounders are not an issue with them, and is large enough to 

indicate that reducing PM2.5 concentrations in the U.S. could save tens of thousands of premature 

deaths each year.  
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Figure Legend. Figure 1 shows the effect size estimate (absolute increase in the death rate for each 

1 µg/m3 increase in PM2.5 exposure, and 95% Confidence Interval) for the entire Medicare Cohort 

in 2000-2016 (All), for only persons never exposed to PM2.5 concentrations above 12 µg/m3 (low) 

during the follow-up period, for males in the entire Medicare Cohort (males) and for females in 

the entire Medicare Cohort.  
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Abstract 19 

The burning of fossil fuels – especially coal, petrol, and diesel – is a major source of airborne fine 20 

particulate matter (PM2.5), and a key contributor to the global burden of mortality and disease. 21 

Previous risk assessments have examined the health response to total PM2.5, not just PM2.5 from 22 

fossil fuel combustion, and have used a concentration-response function with limited support from 23 



 2 

the literature and data at both high and low concentrations. This assessment examines mortality 24 

associated with PM2.5 from only fossil fuel combustion, making use of a recent meta-analysis of 25 

newer studies with a wider range of exposure. We also estimated mortality due to lower respiratory 26 

infections (LRI) among children under the age of five in the Americas and Europe, regions for 27 

which we have reliable data on the relative risk of this health outcome from PM2.5 exposure.  We 28 

used the chemical transport model GEOS-Chem to estimate global exposure levels to fossil-fuel 29 

related PM2.5 in 2012. Relative risks of mortality were modeled using functions that link long-term 30 

exposure to PM2.5 and mortality, incorporating nonlinearity in the concentration response. We 31 

estimate a global total of 10.2 (95% CI: -47.1 to 17.0) million premature deaths annually 32 

attributable to the fossil-fuel component of PM2.5. The greatest mortality impact is estimated over 33 

regions with substantial fossil fuel related PM2.5, notably China (3.9 million), India (2.5 million) 34 

and parts of eastern US, Europe and Southeast Asia. The estimate for China predates substantial 35 

decline in fossil fuel emissions and decreases to 2.4 million premature deaths due to 43.7% 36 

reduction in fossil fuel PM2.5 from 2012 to 2018 bringing the global total to 8.7 (95% CI: -1.8 to 37 

14.0) million premature deaths. We also estimated excess annual deaths due to LRI in children (0-38 

4 years old) of 876 in North America, 747 in South America, and 605 in Europe. This study 39 

demonstrates that the fossil fuel component of PM2.5 contributes a large mortality burden. The 40 

steeper concentration-response function slope at lower concentrations leads to larger estimates 41 

than previously found in Europe and North America, and the slower drop-off in slope at higher 42 

concentrations results in larger estimates in Asia. Fossil fuel combustion can be more readily 43 

controlled than other sources and precursors of PM2.5 such as dust or wildfire smoke, so this is a 44 

clear message to policymakers and stakeholders to further incentivize a shift to clean sources of 45 

energy.  46 
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 47 

Introduction 48 

The burning of fossil fuels – especially coal, petrol, and diesel – is a major source of 49 

airborne particulate matter (PM) and ground-level ozone, which have both been implicated as key 50 

contributors to the global burden of mortality and disease (Apte et al., 2015; Dedoussi and Barrett, 51 

2014; Lim et al., 2013). A series of studies have reported an association between exposure to air 52 

pollution and adverse health outcomes (Brook et al., 2010), even at low exposure levels (< 10 g 53 

m-3, the current World Health Organization, WHO, guideline) (Di et al., 2017). The Global Burden 54 

of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) identified ambient air pollution as 55 

a leading cause of the global disease burden, especially in low-income and middle-income 56 

countries (Forouzanfar et al., 2016).  Recent estimates of the global burden of disease suggest that 57 

exposure to PM2.5 (particulate matter with an aerodynamic diameter < 2.5 m) causes 4.2 million 58 

deaths and 103.1 million disability-adjusted life-years (DALYs) in 2015, representing 7.6% of 59 

total global deaths and 4.2% of global DALYs, with 59% of these in east and south Asia (Cohen 60 

et al., 2017).   61 

A series of newer studies conducted at lower concentrations and at higher concentrations 62 

have reported higher slopes than incorporated into the GBD using the integrated exposure–63 

response (IER)  curve (Burnett et al., 2014). These studies examined mortality due to exposure to 64 

PM2.5 at concentrations below 10 g m-3 in North America (Di et al., 2017; Pinault et al., 2016) 65 

and above 40 g m-3 in Asia (Katanoda et al., 2011; Tseng et al., 2015; Ueda et al., 2012; Wong 66 

et al., 2015; 2016; Yin et al., 2017). Here we have used a concentration-response curve from a 67 

recently published meta-analysis of long-term PM2.5 mortality association among adult populations 68 

which incorporates those new findings at high and low PM2.5 concentrations (Vodonos et al., 69 
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2018). We also focus our study on the health impacts of fossil-fuel derived PM2.5. In contrast, GBD 70 

reports only the health impacts of total PM2.5 and does not distinguish mortality from fossil-fuel 71 

derived PM2.5 and that from other kinds of PM2.5, including dust, wildfire smoke, and biogenically-72 

sourced particles. We focus only on PM2.5 since recent studies have provided mixed results on the 73 

link between ozone and mortality (Atkinson et al., 2016) and there does not exist a global coherent 74 

concentration-response function (CRF) for ozone. 75 

The developing fetus and children younger than 5 years of age are more biologically and 76 

neurologically susceptible to the many adverse effects of air pollutants from fossil-fuel combustion 77 

than adults. This differential susceptibility to air pollution is due to their rapid growth,  developing 78 

brain, and immature respiratory, detoxification, immune, and thermoregulatory systems (Bateson 79 

and Schwartz, 2008; Perera, 2018). Children also breathe more air per kilogram of body weight 80 

than adults, and are therefore more exposed to pollutants in air (WHO, 2006; Xu et al., 2012).  The 81 

WHO estimated that in 2012, 169,000 global deaths among children under the age of 5 were 82 

attributable to ambient air pollution (WHO, 2016). Further estimation of the burden of mortality 83 

due to PM2.5 (particularly from anthropogenic sources) among the young population would 84 

highlight the need for intervention aimed at reducing children's exposure.  85 

Using the chemical transport model GEOS-Chem, we quantified the number of premature 86 

deaths attributable to ambient air pollution from fossil fuel combustion. Improved knowledge of 87 

this very immediate and direct consequence of fossil fuel use provides evidence of the benefits to 88 

current efforts to cut greenhouse gas emissions and invest in alternative sources of energy. It also 89 

helps quantify the magnitude of the health impacts of a category of PM2.5 that can be more readily 90 

controlled than other kinds of PM2.5 such as dust or wildfire smoke. 91 

 92 
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Materials and methods 93 

Calculation of surface PM2.5 concentrations 94 

Previous studies examining the global burden of disease from outdoor air pollution have 95 

combined satellite and surface observations with models to obtain improved estimates of global 96 

annual mean concentrations of PM2.5 (Shaddick et al., 2018). However, the goal of such studies 97 

was to quantify the health response to PM2.5 from all sources, both natural and anthropogenic 98 

(Brauer et al., 2016; Cohen et al., 2017). Here the focus of our study is on surface ambient PM2.5 99 

generated by fossil fuel combustion, and for that we rely solely on the chemical transport model 100 

GEOS-Chem since current satellite and surface measurements cannot readily distinguish between 101 

the sources of PM2.5. Results from GEOS-Chem have been extensively validated against surface, 102 

aircraft, and space-based observations around the world, including simulation of surface pollution 103 

over the United States (Drury et al., 2010; Ford and Heald, 2013; Heald et al., 2012; Leibensperger 104 

et al., 2012; Marais et al., 2016; Zhang et al., 2012), Asia (Koplitz et al., 2016; Lin et al., 2014),  105 

Europe (Protonotariou et al., 2013; Veefkind et al., 2011), and Africa (Lacey et al., 2017; Marais 106 

et al., 2014a; 2014b; 2016; 2019). The model has also been applied to previous studies quantifying 107 

the global burden of disease from particulate matter from all sources (Brauer et al., 2016; Cohen 108 

et al., 2017).  109 

In this analysis we used GEOS-Chem with fossil fuel emissions from multiple sectors 110 

(power generation, industry, ships, aircraft, ground transportation, backup generators, kerosene, 111 

oil/gas extraction), detailed oxidant-aerosol chemistry, and reanalysis meteorology from the 112 

NASA Global Modeling and Assimilation Office. Fossil fuel emissions are from regional 113 

inventories where these are available for the US, Europe, Asia, and Africa, and from global 114 
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inventories everywhere else (such as Mexico, Australia, South America and Canada). More details 115 

of the specific fossil fuel inventories used in GEOS-Chem are in Table S1. Global-scale 116 

simulations in GEOS-Chem were carried out on a coarse spatial grid (2°  2.5°, about 200 km  117 

250 km). Four regional simulations were also performed at fine spatial scale (0.5°  0.67°, about 118 

50 km  60 km) for North America, Europe, Asia, and Africa using boundary conditions from the 119 

global model. The regional simulations allow for a better match with the spatial distribution of 120 

population, thus enhancing the accuracy of the estimates of health impacts. All simulations were 121 

set up to replicate 2012 pollution conditions. As described in the Supplemental Material, we find 122 

that globally, GEOS-Chem captures observed annual mean PM2.5 concentrations with a spatial 123 

correlation of 0.70 and mean absolute error of 3.4 g m-3
, values which compare well with those 124 

from other models (Shindell et al., 2018; Xing et al., 2015). We performed two sets of simulations: 125 

one set with fossil fuel emissions turned on and the other with such emissions turned off.  We then 126 

assumed that the difference between the two sets of simulations represents the contribution of 127 

fossil fuel combustion to surface PM2.5. More information on our choice of GEOS-Chem, the 128 

model setup, details of relevant anthropogenic emissions, and model validation is described in the 129 

Supplemental material. 130 

Population and Health data 131 

We used population data from the Center for International Earth Science Information 132 

Network (CIESIN) (CIESIN, 2018). The Gridded Population of the World,  Version 4 Revision 133 

11 (GPWv4.11) is gridded with an output resolution of 30 arc-seconds (approximately 1 km at the 134 

equator). Since the population data are provided only at five-year intervals, we applied 2015 135 

population statistics to the results of our 2012 GEOS-Chem simulation.  CIESIN population data 136 
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was then aggregated to the spatial scale of the model for the exposure estimates. Country/region 137 

level data on baseline mortality rates were from GBD data for 2015 (based on the 2017 iteration) 138 

(IHME, 2017). USA state-specific mortality rates were obtained from the CDC Wide-ranging 139 

Online Data for Epidemiologic Research (WONDER) compressed mortality files (WONDER). 140 

Canada death estimates by province were obtained from Statistics Canada, CANSIM (Canada, 141 

2018).  142 

PM2.5 mortality concentration –response model 143 

The risk of air pollution to health in a population is usually estimated by applying a 144 

concentration–response function (CRF), which is typically based on Relative Risk (RR) estimates 145 

derived from epidemiological studies. CRFs are necessary elements for the quantification of health 146 

impacts due to air pollution and require regular evaluation and update to incorporate new 147 

developments in the literature. 148 

  Global assessments of air pollution risk often use the Integrated Exposure-149 

Response model (IER) (Burnett et al., 2014), which combined information on PM2.5–mortality 150 

associations from non-outdoor PM2.5 sources, including secondhand smoke, household air 151 

pollution from use of solid fuels, and active smoking. The IER used data from active smoking and 152 

passive smoking to address the limited number of outdoor PM2.5 epidemiologic studies at PM2.5 > 153 

40 g m-3 available at the time. The IER formed the basis of the estimates of disease burden 154 

attributable to PM2.5 (e.g., 4 million deaths in 2015 in GBD 2015). This function was then updated 155 

in 2018 using the Global Exposure Mortality Model (GEMM). In GEMM, data from 41 156 

epidemiological cohort studies were applied (Burnett et al., 2018). Independently conducted 157 

analyses were conducted on 15 of these cohorts to characterize the shapes of PM2.5–mortality 158 

associations in each cohort, using a specified functional form of the CRF. For the remaining 26 159 
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cohorts, the concentration-response was examined with a linear concentration hazard ratio model. 160 

A recent meta-analysis of the association between long-term PM2.5 and mortality (Vodonos et al., 161 

2018) applied techniques involving flexible penalized spline CRF in a multivariate random effects 162 

and meta-regression model. This approach allows the data to specify the shape of the CRF. The 163 

meta-regression pooled 135 estimates from 53 studies examining long-term PM2.5 and mortality of 164 

cohorts aged 15 years and older. The estimate of the confidence intervals about the CRF includes 165 

a random variance component. This meta-analysis provided evidence of a nonlinear association 166 

between PM2.5 exposure and mortality in which the exposure-mortality slopes decreases at higher 167 

concentrations (Figure S5 in Supplemental Material). We have chosen to use the dose-response 168 

function from the meta-analysis rather than the GEMM function as the meta-regression approach 169 

is more flexible and does not constrain the CRF to a specific functional form, it incorporates a 170 

random variance component in estimating the uncertainty around that curve, it is derived with 171 

more studies than previous approaches, and its estimates at high and low exposures are closer to 172 

the estimates in cohorts restricted to only very high and very low exposures. To ensure consistency 173 

with the concentration-response curve, premature mortality rates for the portion of the population 174 

>14 years of age were determined using the population and baseline mortality rates for different 175 

age groups from GBD data for 2015.  176 

 177 

Health impact calculations 178 

We estimated the number of premature deaths attributable to fossil fuel PM2.5 using: (1) 179 

GEOS-Chem PM2.5 estimated with all emission sources and GEOS-Chem PM2.5 estimated without 180 

fossil fuel emissions, as a comparison against the first simulation, (2) total population above the 181 

age of 14 gridded to the GEOS-Chem grid resolution, (3) baseline all-cause mortality rates for 182 
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population above the age of 14 (per country or per state in the US and province in Canada), and 183 

(4) the meta-analysis CRF (Vodonos et al., 2018). All health impacts were calculated on a per-grid 184 

basis at the spatial resolution of the model. We applied the following health impact function to 185 

estimate premature mortality related to exposure to fossil fuel PM2.5 in each GEOS-Chem grid 186 

cell: 187 

 188 

∑ ∆𝑦 = yo ∗ p ∗ AF          (1) 189 

AF =  
exp(β̅∗∆x )−1

exp(β̅∗∆x )
          (2) 190 

β̅(PM2.5)=∫ β(PM2.5)
PM2.5  all emissions

PM2.5  no fossil fuel 
       (3) 191 

 192 

where ∆y is the change in the number of premature deaths due to exposure to fossil fuel PM2.5, yo 193 

is the country/state/province specific baseline (all-cause) mortality rate, p is to the total population 194 

above the age of 14, AF is the attributable fraction of deaths (the fraction of total deaths attributable 195 

to PM2.5 exposure), β̅ is the mean estimate for long-term PM2.5 mortality concentration-response 196 

over a range of concentrations from the penalized spline model in the recent meta-analysis, and 197 

∆𝑥 is the change in PM2.5 concentration, calculated as the difference between GEOS-Chem PM2.5 198 

with all emissions and GEOS-Chem PM2.5 without fossil fuel emissions. 199 

 200 

For each country, we summed the change in premature deaths (∆y) in each grid cell over all grid 201 

cells in that country. To estimate the change in deaths between the two scenarios (with and without 202 

fossil fuel combustion), we computed the change in deaths in each grid cell, based on its 203 
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population, baseline rate, and exposure under the two scenarios (Equation (1)). The attributable 204 

fraction (AF), or proportion of deaths estimated as due to long-term exposure to PM2.5 fossil fuel 205 

air pollution, was calculated using the concentration-response estimate, following the form shown 206 

in Equation (2) (Figure S5 in Supplemental material). Because these estimates of mortality 207 

concentration response (β) are a nonlinear function of concentration, we used the penalized spline 208 

model predictions from this meta-analysis to integrate the concentration-specific β in each grid 209 

cell from the low PM2.5 scenario (without fossil fuel emissions) to the high PM2.5 scenario (with 210 

all emissions, including fossil fuel). In this way, we could calculate a mean value of β for each grid 211 

cell. There exist insufficient epidemiological data to calculate a robust health response function 212 

specific to fossil-fuel PM2.5. GEOS-Chem is a deterministic model. Therefore, our 95% confidence 213 

intervals (CI) for our estimates reflect only the 95% CI for the concentration response function. 214 

Secondary analysis among children <5 years old 215 

Lower respiratory infections (LRI), including pneumonia and bronchiolitis of bacterial and viral 216 

origin, are the largest single cause of mortality among young children worldwide and thus 217 

account for a significant global burden of disease worldwide (Nair et al., 2010).  As mentioned 218 

previously, young children are more susceptible to the adverse effects of particulate air pollution 219 

than adults. Mehta et al. (2013) estimated the overall impact of PM2.5 concentration with Relative 220 

Risk (RR) of 1.12 for LRI mortality per 10 g m-3 increase in annual average PM2.5 221 

concentration, as compared to RR of 1.04 for respiratory mortality among adults (Vodonos et al., 222 

2018). We estimated the number of premature deaths attributable to PM2.5 among children under 223 

the age of 5 years due to a range of LRI classifications (ICD-10, International Classification of 224 

Diseases codes: A48.1, A70, J09-J15.8, J16-J16.9, J20-J21.9, P23.0-P23.4). Baseline numbers of 225 

deaths due to LRI were obtained from the GBD for 2015 (IHME, 2017). We used the Relative 226 
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Risk (RR) of 1.12 (1.03-1.30) for LRI occurrence per 10 g m-3 increase in annual average PM2.5 227 

concentration (Mehta et al., 2013). Studies of longer-term exposure of PM2.5 and LRI in that 228 

meta-analysis were conducted in only a few developed countries with relatively low levels of 229 

annual mean PM2.5 (< 25 g m-3), specifically the Netherlands, Czech Republic, Germany, 230 

Canada and USA. We therefore calculated the number of premature LRI deaths attributable to 231 

PM2.5 only in North America, South America, and Europe.  232 

 233 

Results 234 

Impact of fossil fuel use on PM2.5 235 

Figure 1 shows the difference between global GEOS-Chem PM2.5 with and without fossil 236 

fuel emissions, plotted as the annual mean for 2012.  Results show large contributions of 50-100 237 

g m-3 in PM2.5 over China and India, with smaller increments of 10-50 g m-3 over large swaths 238 

of the United States and Europe, industrialized countries in Africa (South Africa and Nigeria), and 239 

along the North African coastline due to European pollution. 240 

Global assessment of mortality attributable to PM2.5 241 

Based on the annual PM2.5 simulation with and without global fossil fuel emissions, we 242 

estimated the excess deaths and attributable fraction (AF %) for the population above 14 years old. 243 

Figure 2 shows the simulated annual global premature mortality due to exposure to ambient PM2.5 244 

from fossil fuel emissions. Greatest mortality is simulated over regions with substantial influence 245 

of fossil-fuel related PM2.5, notably parts of Eastern North America, western Europe, and South-246 

East Asia. 247 
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We estimated a total global annual burden premature mortality due to fossil fuel 248 

combustion in 2012 of 10.2 million (95% CI: -47.1 to 17.0 million). Table 1 reports the baseline 249 

number of deaths for people >14 years old, the annual PM2.5 simulation with and without global 250 

fossil fuel emissions, the estimated excess deaths, and the attributable fraction for the populated 251 

continents. As shown in Table 1, we calculated 483,000 premature deaths in North America (95% 252 

CI: 284,000-670,000), 187,000 deaths in South America (95% CI: 107,000-263,000), 1,447,000 253 

deaths in Europe (95% CI: 896,000-1,952,000), 7,916,000 deaths in Asia (95% CI: -48,106,000 to 254 

13,622,000), and 194,000 deaths in Africa (95% CI: -237,000 to 457,000). The wide confidence 255 

intervals in Asia and Africa are due to the lack of data for areas where the exposure remains outside 256 

the range of the concentration response curve (PM2.5 > 50 g m-3; Figure S5). The population-257 

weighted pollution concentrations presented in Table 1 are higher than the average PM2.5 258 

concentrations for each country, since fossil-fuel PM2.5 is mainly emitted in populous areas. The 259 

two countries with the highest premature mortality are China with 3.91 million and India with 2.46 260 

million. Supplemental Table S2 provides extended data of the health impact calculations for each 261 

country. For comparison, Table 1 also reports the number of premature deaths attributable to fossil 262 

fuel PM2.5 when the GEMM function is applied to the GEOS-Chem output. For most regions, the 263 

number of premature deaths calculated with GEMM is significantly lower than that calculated with 264 

the new function from Vodonos et al. (2018). Globally, the GEMM function yields 6.7 million 265 

deaths in 2012 due to fossil fuel combustion.  266 

 267 

Assessment of children (under the age of 5) LRI mortality attributable to PM2.5 268 

We estimated the number of premature deaths attributable to PM2.5 among children under 269 

the age of 5 due to LRI only for those countries or regions with levels of annual PM2.5 270 



 13 

concentrations below 25 g m-3. These include North America, South America, and Europe. Based 271 

on the annual PM2.5 simulation with and without fossil fuel emissions, we calculated 876 excess 272 

deaths due to LRI in North and Central America, 747 in South America, and 605 in Europe (Table 273 

2). Using the GBD estimate of total deaths due to LRI (Institute for Health Metrics and Evaluation), 274 

we estimate that PM2.5 from fossil fuel combustion accounted on average for 7.2% of LRI mortality 275 

among children under the age of 5 in these regions, with the largest proportion of 13.6% in Europe 276 

(95% CI -0.4 to 25.3%) .  277 

 278 

Discussion 279 

We used the chemical transport model GEOS-Chem to quantify the global mortality 280 

attributed to PM2.5 air pollution from fossil fuel combustion. Using the updated concentration 281 

response relationship between relative mortality and airborne PM2.5, we estimated global 282 

premature mortality in 2012 of 10.2 million per year from fossil fuel combustion alone. China has 283 

the highest burden of 3.91 million per year, followed by India with 2.46 million per year. These 284 

estimates carry large uncertainty (e.g., 95% CI of  -47.1 to 17.0 million for the global estimate) 285 

from the concentration-response curve, as it is an improved function that provides a more realistic 286 

picture of the health consequences of PM2.5 compared to previous studies.  287 

Our estimate is for the year when fossil fuel emissions in China peaked and so predates 288 

large and dramatic reductions in fossil fuel emissions due to strict mitigation measures. These 289 

reductions led to a 30-50% decline in annual mean PM2.5 across the country from 2013 to 2018 290 

(Zhai et al., 2019). If we apply a 43.7% reduction in GEOS-Chem PM2.5 concentrations from the 291 

simulation with all emission sources, premature mortality in China decreases from 3.91 million to 292 
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2.36 million. India has recently imposed controls on pollution sources, but there is not yet evidence 293 

of air quality improvements in densely populated cities like Delhi (Vohra et al., 2020). 294 

Consideration of the 2012-2018 decrease in PM2.5 exposure in China reduces the total global 295 

premature mortality due to fossil fuel PM2.5 from 10.2 million premature deaths each year to 8.7 296 

(95% CI: -1.8 to 14.0) million. 297 

In 2012, the population-weighted PM2.5 is 72.8 g m-3 for China and 52.0 g m-3 for India 298 

from all sources and 9.9 g m-3 for China and 9.0 g m-3 for India without fossil fuel emissions. 299 

The low value of non-fossil fuel PM2.5 is reasonable for southern India (Dey et al., 2012) but may 300 

be an underestimate in the Indo-Gangetic Plain where crop residue burning contributes to high 301 

levels of PM2.5 (100-200 g m-3) during the post-monsoon season (Ojha et al., 2020). An increase 302 

in the concentration of non-fossil-fuel PM2.5 would decrease our estimate of the number of 303 

premature deaths due to fossil fuel PM2.5 in India and China, as this would decrease the risk of 304 

premature mortality with a unit change in PM2.5 (Figure S5).  305 

 306 

Comparison with previous estimates of global mortality attributable to outdoor PM2.5 307 

Previous estimates of the GBD for 2015 suggest that exposure to total PM2.5 causes 4.2 308 

million deaths (Cohen et al., 2017), whereas here we estimate more than double (10.2 million) the 309 

number of premature deaths from fossil fuel combustion alone in 2012. Differences between the 310 

current study and the 2015 GBD lower estimates are related mainly to the choice of the shape of 311 

the concentration-response function and the relative risk estimate. First, to provide information 312 

about exposure response at higher concentrations, the 2015 GBD study used the integrated 313 

exposure–response (IER) model in which active and second-hand smoking exposures were 314 
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converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass 315 

(Burnett et al., 2014). Recent cohort studies from Asia indicate that this substantially 316 

underestimates the CRF at high concentrations. In contrast, in the current study we applied a CRF 317 

that was directly estimated from PM2.5 studies alone, as described in a recent meta-analysis that 318 

included estimates from studies in countries like China with higher PM2.5 concentrations than our 319 

included in previous derivations of CRFs (Vodonos et al., 2018). The CRF from this recent meta-320 

analysis flattens out at higher concentrations, as does the IER curve. However, this flattening is 321 

not as great as in the IER, as Asian cohort studies at high PM2.5 concentrations report larger effects 322 

than would be expected from the IER. Hence estimates of the global attributable fraction of deaths 323 

due to air pollution using the function from the recent meta-analysis are higher than the estimates 324 

using the IER function.  In addition, at much lower concentrations (< 10 g m-3), we applied higher 325 

slopes than assumed in the IER function. Recent studies at very low concentrations similarly show 326 

that the IER underestimated effects in this range (Pinault et al., 2016). Since GEOS-Chem 327 

estimated quite low concentrations in developed countries in Europe and North America, the 328 

number of premature deaths from PM2.5 in these countries is greater than previous estimates. 329 

Following an approach similar to the recent meta-analysis (Vodonos et al., 2018), Burnett 330 

et al. (2018) modeled the shape of the association between PM2.5 and non-accidental mortality 331 

using data from 41 cohorts from 16 countries with GEMM. In that study, the uncertainty in a subset 332 

(15 cohorts) was characterized in the shape of the concentration-response parameter by calculating 333 

the Shape-Constrained Health Impact Function, a prespecified functional form. These estimated 334 

shapes varied across the cohorts included in the function. GEMM predicted 8.9 million (95% CI: 335 

7.5–10.3) deaths in 2015 attributable to long-term exposure to PM2.5 from all sources; 120% higher 336 

excess deaths than previous estimates, but still lower than our estimate of mortality from exposure 337 
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to fossil-fuel derived PM2.5 for 2012. Lelieveld et al. (2019) estimated the global and regional 338 

mortality burden of fossil fuel attributable PM2.5 by applying the GEMM CRF to a global 339 

chemistry-climate model that is overall coarser (~1.9° latitude and longitude) than the model used 340 

in this work. The authors reported 3.61 million deaths per year attributable to pollution from fossil 341 

fuel combustion and 5.55 million deaths per year due to pollution from all anthropogenic sources.  342 

The estimated deaths from fossil fuel combustion are much lower than those in the current study 343 

for several reasons. First, the meta-analysis function used in our work includes 135 coefficients of 344 

all-cause mortality for adults aged 14-64 years old, together with cause-specific mortality and all-345 

cause mortality among adults aged 65 and older, thus incorporating many more studies in a meta-346 

regression framework than the 41 cohorts and coefficients in the GEMM function. Second, the 347 

approach used to estimate the CRF in Vodonos et al. (2018) allows for additional flexibility in the 348 

shape of the function because of its use of penalized splines.  In contrast, the GEMM pooled CRF 349 

integrates a set of 26 log-linear functions and 15 functions characterized by three parameters 350 

governing the shape of the function. Third, while Cohen et al. (2017), Lelieveld et al. (2019) and 351 

Burnett et al. (2018) accounted for mortality from five specific causes (ischemic heart disease, 352 

stroke, chronic obstructive pulmonary disease, lung cancer and acute respiratory infections), in the 353 

current analysis we estimated changes in deaths from all causes. Fourth, some of the difference in 354 

the mortality estimates may come from differences in the age range. Our approach considers a 355 

wider population age range of over 14 years old (Vodonos et al., 2018) compared to the other 356 

studies, which considered a population age range of over 25 years (Burnett et al., 2018; Cohen et 357 

al., 2017; Lelieveld et al., 2019). Our approach has wider age range since the age range for the 358 

studies in the meta-analysis (Vodonos et al., 2018) included people younger than 25 years old 359 

(Hart et al., 2011; Pinault et al., 2016) . Finally, the finer spatial resolution that GEOS-Chem 360 
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utilizes over much of the globe improves co-location of PM hotspots and population centers, 361 

yielding higher estimates of excess mortality compared to Lelieveld et al. (2019).  362 

 363 

 Limitations 364 

There are a number of limitations that must be acknowledged. First, vulnerability to PM2.5 365 

exposure may vary by population characteristics such as ethnicity, socio-economic status (SES), 366 

risk behaviors such as smoking and underlying comorbidities (Krewski et al., 2000; Pope et al., 367 

2004; Wang et al., 2017) and by different exposure characteristics. We were limited in our ability 368 

to undertake a comprehensive analysis of factors influencing the association between PM2.5 and 369 

mortality since the global mortality data were not available by detailed age, ethnicity, SES, 370 

lifestyle, and underlying disease strata. In addition, the 95% CI of our estimates reflect the lower 371 

and upper bound of the CRF, which flattens out at higher concentrations. Regions with very high 372 

concentrations (>50 g m-3) are beyond the data range in the meta-analysis; thus, the lower limit 373 

of the CI for those regions (China, West and North Africa; Table 1) are much less than zero.  374 

Second, for LRI in children, we have restricted our analysis to developed countries with annual 375 

PM2.5 < 25 µg m-3, in accordance with the geographical locations of the studies included in the 376 

meta-analysis by Mehta et al. (2013). Developing countries have much higher LRI mortality rates, 377 

and this restriction doubtless results in an underestimate. Finally, GEOS-Chem estimates of PM2.5 378 

concentrations almost certainly contains errors in estimates of emissions of pollution precursors, 379 

meteorological effects on air quality, and representation of the complex physical and chemical 380 

formation pathways. In the absence of systematic bias, such model error may not produce large 381 



 18 

aggregate errors in the mortality burden of PM2.5, but bias may be present as well. In any event, it 382 

is challenging to estimate the true size of this error.  383 

 384 

Conclusions 385 

The effects of CO2-driven climate change on human health and welfare are complex, ranging from 386 

greater incidence of extreme weather events, more frequent storm-surge flooding, and increased 387 

risk of crop failure (Duffy et al., 2019). One consequence of increasing reliance on fossil fuel as 388 

an energy source that has thus far received comparatively little attention is the potential health 389 

impact of the pollutants co-emitted with the greenhouse gas CO2.  Such pollutants include PM2.5 390 

and the gas-phase precursors of PM2.5. This study demonstrates that the fossil fuel component of 391 

PM2.5 contributes a large global mortality burden. By quantifying this sometimes overlooked health 392 

consequence of fossil fuel combustion, a clear message is sent to policymakers and stakeholders 393 

of the co-benefits of a transition to alternative energy sources.  394 
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Figures  

Figure 1: Contribution of fossil fuel combustion to surface PM2.5, as calculated by the 

chemical transport model GEOS-Chem. The plot shows the difference in surface PM2.5 

concentrations from GEOS-Chem with and without fossil fuel emissions. 
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Figure 2. Estimated annual excess deaths due to exposure to ambient PM2.5 generated by 

fossil fuel combustion.  
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Table 1. Number of deaths attributable to exposure to fine particulate matter (PM2.5) generated by fossil fuel combustion for 

the population >14 years old 

 

GEOS-Chem 

spatial grid 

resolutiona 

 

 

Regionb 

Total 

deaths 

>14 years 

old, in 

thousands 

Population-weighted annual mean PM2.5 

concentration, μg m-3
 

Mean 

attributable 

fraction of 

deaths, % (95% 

CI)d 

Deaths attributable to 

fossil-fuel related 

PM2.5, in thousands 

(95% CI)c 

GEMM function 

deaths attributable 

to fossil-fuel related 

PM2.5, in thousands 

(95% CI)e 

PM2.5 from 

all emission 

sources 

PM2.5 without 

fossil fuel 

Estimated PM2.5 

from fossil fuel, 

% 

 

 

Fine 

 

North 

America 

Central America 

& the Caribbean 
1,148 10.06 3.03 7.03 (69.9) 8.2 (4.5-11.6) 94 (52-133) 80 (62-98) 

USA 2,705 11.81 2.15 9.66 (81.8) 13.1 (7.8-18.1) 355 (212-490) 305 (233-375) 

Canada 250 12.01 1.76 10.25 (85.4) 13.6 (8.0-18.7) 34 (20-47) 28 (22-35) 

Coarse South America 2,389 8.66 3.02 5.65 (65.2) 7.8 (4.5-11.0) 187 (107-263) 159 (121-195) 

Fine Europe 8,626 19.22 4.68 14.54 (75.7) 16.8 (10.4-22.6) 1,447 (896-1,952) 1,033 (798-1,254) 

Fine 

Asia 

Eastern Asia 25,468 51.72 8.68 43.05 (83.2) 30.7 (-189.1-52.9) 7,821 (-48,150-13,478) 4,945 (3,943-5,826) 

Coarse 
Western Asia & 

the Middle East 
1,456 26.95 20.73 6.22 (23.1) 6.5 (3.0-9.9) 95 (44-144) 54 (43-65) 

Fine Africa 5,274 32.98 28.98 4.00 (12.1) 3.7 (-4.5-8.7) 194 (-237-457) 102 (81-121) 

Coarse Australia & Oceania 189 4.17 2.19 1.98 (47.4) 3.2 (1.6-4.8) 6.0 (2.9-9.0) 6.4 (4.8-7.9) 

 Global 47,506 38.01 11.14 26.87 (70.7) 21.5 (-99.0-35.7) 10,235 (-47,054-16,972) 6,713 (5,308-7,976) 

a Fine spatial scale is 0.5°  0.67°, or about 50 km  60 km. Coarse spatial scale is 2°  2.5°, or about 200 km  250 km 

b List of countries for each region and subregion is provided in supplemental Table S2  

c Annual number of deaths attributable to long-term exposure to PM2.5 derived from fossil fuel combustion. CI is the confidence 

interval. 

d Mean proportion of all deaths which can be attributed to long-term exposure to PM2.5 generated by fossil fuel combustion, averaged 

over the country or region. CI; confidence interval.  

e Attributable deaths calculated with the Global Exposure Mortality Model (GEMM) concentration-response function. 44 
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Table 2. Number of deaths due to lower respiratory infection (LRI) attributable to exposure to fine particulate matter (PM2.5) 

from fossil fuel combustion for the population <5 years old 

Region 
Total deaths for 

children <5 years 

old due to LRI 

LRI deaths 

attributable to 

fossil-fuel PM2.5  

(95% CI) a 

Mean attributable 

fraction of deaths, %  

(95% CI) b 

North America 13,230 876 (-26-1,657) 6.6 (-0.2-12.5) 

Central America & the Caribbean  12,507 802 (-23-1,516) 6.4 (-0.2-12.1) 

USA 672 69 (-2-131) 10.2 (-0.3-19.5) 

Canada 50 5 (0-10) 10.8 (-0.3-20.5) 

South America 13,231 747 (-21-1,443) 5.7 (-0.2-10.9) 

Europe 4,446 605 (-18-1,126) 13.6 (-0.4-25.3) 

a Annual number of deaths attributed to long-term exposure to PM2.5 derived from fossil fuel combustion. 

b Mean proportion of deaths due to long-term exposure to PM2.5 generated by fossil fuel combustion. CI is the confidence interval. 
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Figure S4. Comparison of the spatial distribution of observed and modeled PM2.5 in Europe and 23 

North America. Data are on a uniform 0.50.667 grid. 24 
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 33 

Description of GEOS-Chem. 34 

GEOS-Chem is a three-dimensional chemical transport model that includes detailed oxidant-aerosol 35 

chemistry in the troposphere and is used by more than 80 groups worldwide (www.geos-chem.org). The 36 

model is widely cited in the peer-reviewed literature – e.g., more than 4000 times in the year 2017 alone 37 

(http://acmg.seas.harvard.edu/geos/geos_pub.html).  The model has been frequently applied to interpret 38 

observed PM2.5 in regions dominated by anthropogenic sources – e.g., China (Aunan et al., 2018),  Korea 39 

(Lee et al., 2017),  India (Venkataraman et al., 2018),  and the US (Di et al., 2016; Silvern et al., 2017); and 40 

validation has been performed for specific source sectors – e.g., transportation (Travis et al., 2016), biogenic 41 

sources (Marais et al., 2017), and power plants (S. W. Wang et al., 2012). Here we use GEOS-Chem v10-42 

01, driven by 2012 GEOS-5 meteorology (gmao.gsfc.nasa.gov/GEOS_systems/). The GEOS-5 data are 43 

produced at 0.5°×0.667° horizontal resolution and are re-gridded here to 2°×2.5° for the global simulation. 44 

We also perform four regional simulations – for Europe, North America, Africa, and Asia – and for these 45 

simulations we keep the native grid resolution. Boundary conditions at 2°×2.5° from the global simulation 46 

are applied to these regional simulations. Most fine-scale, regional models, such as the Community 47 

Multiscale Air Quality Model, rely on chemical boundary conditions from global models with different 48 

chemical schemes, but our approach permits application of a consistent scheme across the globe.  The 49 

0.5°×0.667° horizontal resolution in GEOS-Chem over key regions is, however, relatively coarse compared 50 

to that in some other regional models.  Y. Li et al. (2016) show that application of coarse resolution leads 51 

http://www.geos-chem.org/
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to an underestimate of health impacts of 8%, implying that our mortality estimates are conservative. Our 52 

choice of 2012 as the simulation year is discussed below. 53 

GEOS-Chem simulates the mass concentrations of key particle types including sulfate, nitrate, and 54 

ammonium (Park et al., 2004; L. Zhang et al., 2012), organic carbon (Heald et al., 2006; 2011) black carbon 55 

(Q. Q. Wang et al., 2014), dust (Fairlie et al., 2007), and sea salt (Jaegle et al., 2011).  Particle chemistry is 56 

coupled to gas-phase chemistry as described by (Mao et al., 2013). Gas/particle partitioning of sulfate, 57 

nitrate and ammonium (SNA) particles is computed with the ISORROPIA II thermodynamic module 58 

(Fountoukis and Nenes, 2007; Pye et al., 2009). Wet and dry deposition of particles follow Liu et al. (2001) 59 

and L. M. Zhang et al. (2001), respectively. 60 

Emissions in GEOS-Chem are computed by the Harvard-NASA Emission Component (HEMCO) (Keller 61 

et al., 2014), which combines and regrids ensembles of user-selected emission inventories. We apply global 62 

anthropogenic emissions but supersede these with regional emissions where the latter are more reliable 63 

(Table 1). Fossil fuel emissions in Africa include (1) industry and power plants from the global inventories 64 

and (2) diffuse and inefficient combustion sources (diesel and petrol generators, ad-hoc oil refining, gas 65 

flares, kerosene use, cars, and motorcycles) from the DICE-Africa inventory (Marais and Wiedinmyer, 66 

2016). We scale all anthropogenic inventories to 2012, as described by van Donkelaar et al. (2008). 67 

Biogenic emissions are from MEGAN v2.1 for volatile organic compounds (Guenther et al., 2012) and 68 

from Hudman et al. (2012) for soil nitrogen oxides. Lightning emissions of nitrogen oxides are computed 69 

as a function of cloud top height as described by Murray et al. (2012).  Dust entrainment and deposition 70 

follow the DEAD scheme of Zender et al. (2003) as implemented in GEOS-Chem by Fairlie et al. (2007). 71 

Biomass burning emissions are from the Global Fire Emissions Database version 4 (GFED4) (Giglio et al., 72 

2013). 73 

For this study, we first calculate the surface fine particle mass concentrations (PM2.5), with all emissions 74 

sources turned on. For consistency with the PM2.5 measurement protocol set by the U.S. Environmental 75 
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Protection Agency, we assume 35% relative humidity everywhere (except for Europe) and standard ambient 76 

conditions, with temperature of 298.15 K and surface pressure of 1013.25 hPa. In Europe, we assume 50% 77 

relative humidity, as is the protocol there. We then perform the identical simulation with emissions arising 78 

from fossil fuel combustion turned off.  The same meteorological fields are applied for both simulations – 79 

i.e., the simulation does not allow feedbacks from particles onto meteorology. In the no-fossil-fuel case, all 80 

fossil fuel sources are turned off in both the nested simulations and in the global simulation providing 81 

boundary conditions. The difference between the two simulations (with and without fossil fuel) represents 82 

the contribution of fossil-fuel combustion to surface PM2.5. This approach assumes a linear response of 83 

surface PM2.5 to changes in emissions.   84 

Our choice of 2012 as the simulation year requires explanation. Air quality is influenced not just by 85 

emissions but also by meteorological variables such as surface temperature and wind speed, which can vary 86 

greatly on inter-annual timescales. Ideally, our analysis would involve multi-year simulations on both the 87 

coarse- and fine-scale grids, but such effort would be computationally expensive. We choose instead to do 88 

a one-year simulation for a year not influenced by El Niño conditions, which can worsen or ameliorate air 89 

pollution, depending on the region (e.g., Chang et al. (2016), Shen and Mickley (2017)).  To gauge the error 90 

implied by our choice to simulate just one year rather than a span of years, we examine the inter-annual 91 

variation in total PM2.5 concentrations at the surface estimated from the Dalhousie University archive (van 92 

Donkelaar et al., 2016). The PM2.5 values in the Dalhousie archive are calculated by first combining satellite 93 

observations with GEOS-Chem estimates, and then calibrating the resulting concentrations with available 94 

ground-based observations (mostly Europe, the US, India and China). We find that the global mean average 95 

of the relative standard deviation of total PM2.5 in the Dalhousie archive over 2008 to 2016 is just 7%. 96 

Averaged over large regions on the continental scale, the relative standard deviation ranges from 4% over 97 

Australia to 11% over the Asia nested grid domain (Figure S1). Inter-annual variability in this metric is 98 

greatest (> 60%) for smaller regions influenced by wildfires or biomass burning – e.g., Indonesia and remote 99 

areas at high northern latitudes where few people live.  To test our choice of 2012 as a representative year, 100 
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we calculate the 2012 anomaly in the Dalhousie PM2.5 time series (Figure S2). Again on a continental scale, 101 

we find that 2012 concentrations range from 0.7 µg m-3 less to 0.4 µg m-3 greater than the 2008-2016 102 

average (Figure S2). Given the relatively small inter-annual variability in surface PM2.5 in the Dalhousie 103 

archive over most populated regions, as well as the small anomalies in PM2.5 in 2012 relative to the long-104 

term mean, we conclude that the 2012 GEOS-Chem simulation provides a representative snapshot of global 105 

air quality. 106 

To validate the 2012 PM2.5 results from GEOS-Chem, we rely on archived PM2.5 concentrations from the 107 

World Health Organization database (WHO). We find that GEOS-Chem captures the observed annual 108 

mean PM2.5 concentrations with a correlation of 0.70, mean absolute error of 3.4 µg m-3
, and normalized 109 

mean bias of 27% (Figure S3). Our high bias in the US (where most North American WHO data are 110 

located) is opposite to the low bias estimated by Ford and Heald (2016) in urban (-25%) and rural (-6%) 111 

areas; such biases may be due to differences in US emission inventories for both gas-phase aerosol 112 

precursors and primary particles (Xing et al., 2015). A caveat in our comparison is that most observations 113 

(95%) in the WHO database with at least 75% temporal coverage in 2012 are in North America and 114 

Europe. We add to Figure S3 the 2012 observations from the US embassy in Shanghai (those for Beijing 115 

are already in the WHO dataset), and national monitoring sites embassies in Delhi (Cusworth et al., 116 

2018), and the Highveld region in South Africa (South African Air Quality Information System; data 117 

obtained by request from the South African Weather Service in July 2018). Over the European domain in 118 

Figure S1, we find that GEOS-Chem yields a correlation of 0.60, mean absolute error of 5.2 µg m-3 and a 119 

normalized mean bias of 33% in surface PM2.5; over the North American domain in Figure S1, these 120 

values are 0.52, 1.8 µg m-3 and 20% (Figure S4). Taken together, these validation statistics are similar to 121 

those reported by other studies examining surface PM2.5 in global models (e.g., Shindell et al. (2018)) and 122 

regional models (e.g., Xing et al. (2015)) .  123 
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Table S1. GEOS-Chem anthropogenic emissions. All emissions are scaled to 2012 conditions. 124 

Region Inventory name Species Reference 

Global EDGAR v4.2a,c 

 

NO, CO, SO2, 

sulfate, ammonia 

Olivier and Berdowski (2001)  

Global  RETROa,c 

 

Non-methane 

VOCs 

Schultz et al. (2007)  

Global  --- Ethane Xiao et al. (2008)  

Global GEIA Biofuel ammonia www.geiacenter.org 

Global  BONDa,c Carbonaceous 

particles 

Bond et al. (2007)  

Global AEIC v2.0 

aircraft 

NO, CO, etc. Stettler et al. (2011)  

Global ARTCAS ship SO2 Eyring et al. (2005)  

Global ICOADS ship CO C. Wang et al. (2008)  

Global PARANOX ship NO Vinken et al. (2011)  

United States NEI 2011a,b,c Many species US EPA,  

www3.epa.gov/airtrends 

Europe EMEPb,c Many species www.emep.int 

Asia MIXc Many species M. Li et al. (2017), Venkataraman et al. 

(2018), X. Li et al. (2018)  

Africa DICEc,d Many species Marais and Wiedinmyer (2016)  

Africa --- Open waste 

burning species 

Wiedinmyer et al. (2014)  

 125 

a Includes biofuel sources 126 

b Includes ship emissions 127 

c Includes land-based transport emissions 128 

d Includes only diffuse and inefficient sources of anthropogenic emissions – residential fuelwood, diesel 129 

and petrol generators, ad-hoc oil refining, gas flares, kerosene use, charcoal production and use, road 130 

transport (including motorcycles). For emissions from formal industry and powerplants, we use the global 131 

inventories.  132 

 133 

 134 
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Figure S1. Uncertainty in 2012 PM2.5 due to interannual variability. Interannual variability is 

estimated as the relative standard deviation of the Dalhousie satellite-derived PM2.5 product (van 

Donkelaar et al., 2016) for 2008-2016 at 0.10.1. Values inset are the domain mean relative 

standard deviations for North America, South America, Western Europe (including portions of 

North Africa and the Middle East), Africa (including a portion of the Middle East), Southeast Asia, 

and Australia. 
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Figure S2. Representativeness of PM2.5 in 2012, calculated as the absolute difference in 2012 

and 2008-2016 mean PM2.5 from Dalhousie (van Donkelaar et al., 2016) at 0.10.1. Values 

inset are domain mean anomalies for North America, South America, Western Europe (including 

portions of North Africa and the Middle East), Africa (including a portion of the Middle East), 

Southeast Asia, and Australia.   
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Figure S3. Evaluation of GEOS-Chem PM2.5. Points are annual mean PM2.5 for coincident 

0.50.667 grid squares with at least 75% temporal coverage in the observations. GEOS-Chem 

PM2.5 is estimated at 50% relative humidity (RH) in Europe and 35% RH everywhere else, 

following standard protocols in measurements of PM2.5. Reduced major axis (RMA) regression 

line (solid black line) and statistics, and the Pearson’s correlation coefficient for all coincident grid 

squares are given inset. Points in red are in Europe and in blue are in North America. Only 7 out 

of 957 points exceed the range shown.  
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Figure S4. Comparison of the spatial distribution of observed and modeled PM2.5 in Europe and 

North America. Data are on a uniform 0.50.667 grid. Only observations with at least 75% 

temporal coverage are used. PM2.5 are obtained at 50% RH in Europe and 35% RH in North 

America. Data for the two domains are plotted on different scales. Mean PM2.5 for coincident grid 

squares is given inset 
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PM2.5 mortality concentration –response model 

We estimated the number of premature deaths attributable to fossil-fuel related PM2.5 using a health 

impact function. To estimate the excess number of deaths associated with PM2.5 exposure one 

requires estimates of exposure, the size of the population exposed, the mortality rate for that 

population, and the fraction of total deaths attributable to that exposure (AF%).  

Recent meta-analysis of the association between long-term PM2.5 and mortality (Vodonos et al., 

2018) applied a multivariate linear random effects meta-analysis and meta-regression models that 

polled 135 hazard ratio estimates derived from 53 studies examined long-term PM2.5 and mortality. 

This meta-analysis provided an evidence of a nonlinear association where the exposure-mortality 

slopes decreased at higher concentrations (Figure S5). For example, each 1 µg m-3 increase in 

PM2.5 was associated with a 1.29% increase in all-age all-cause mortality (95%CI 1.09-1.50) at a 

mean exposure of 10 µg m-3, which decreased to 0.94 % (95%CI 0.76-1.12) at a mean exposure of 

20 µg m-3, to 0.81% (95%CI 0.52-1.12) at 30 µg m-3 and to 0.79% (95%CI 0.40-1.13) at 40 µg/m3. 

Hence, for examining a reduction of PM2.5 levels from 15 to 10 µg/m3, we calculated the mean 

slope as area under the curve between 0.014 and 0.011= 0.0125. A reduction of PM2.5 levels from 

30 to 20 µg/m3, the mean slope was calculated as area under the curve between 0.009 and 0.008 = 

0.00814 

Mean value of estimates of mortality (β̅) for each grid cell was calculated as area under the curve 

for the concentration-specific β in each grid cell from the low PM2.5 scenario (without fossil fuel 

emissions) to the high PM2.5 scenario (with all emissions, including fossil fuel) following the form 

shown in Equation 

β̅(PM2.5)=∫ β(PM2.5)
PM2.5  all emissions

PM2.5  no fossil fuel 
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Figure S5. Estimates for long-term PM2.5 mortality dose-response, drawn from the meta-analysis 

of long-term association between PM2.5 and mortality (Vodonos et al., 2018).  
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Table S2. Extended data. Global regions, number of deaths, attributable fraction (%) for the population above 14 years old 

attributable to fine particulate matter (PM2.5) exposure in 2012  

Country name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 
With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

North America 

Bermuda 488 3 1.9 1.1 9               1.8  

Greenland 472 1.2 0.9 0.3 3               0.6         

Central America & the Caribbean 

Antigua and Barbuda 538 4.4 4.1 0.3 2               0.4  

Bahamas 2,347 4.1 2.8 1.4 53               2.3  

Barbados 2,523 4.9 4.7 0.2 7               0.3  

Belize 1,530 5 4 1.1 26               1.7  

Costa Rica 38,094 5.4 2.9 2.6 1,557               4.1  

Cuba 95,635 5.3 3.8 1.5 2,334               2.4  

Dominica 668 4.9 4.7 0.2 2               0.3  

Dominican Republic 60,949 11.2 5.3 6 4,925               8.1  

El Salvador 44,036 9.7 3.4 6.3 4,029               9.1  

Grenada 983 4.6 4.3 0.4 6               0.6  

Guatemala 67,426 9.7 3.2 6.5 6,205               9.2  

Haiti 70,013 8.2 4.9 3.3 3,409               4.9  

Honduras 40,564 7.9 3.5 4.4 2,620               6.5  

Jamaica 18,511 9.1 4.7 4.4 1,183               6.4  



 

 14 

Country name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

Mexico 615,874 11.8 2.4 9.5 65,871             10.7  

Nicaragua 20,467 5.4 3.5 1.9 614               3.0  

Panama 16,364 4.7 2.5 2.2 594               3.6  

Puerto Rico 28,717 5.5 4.6 0.9 409               1.4  

Saint Lucia 1,191 5 4.8 0.2 4               0.3  

Saint Vincent and the Grenadines 913 4.7 4.5 0.2 3               0.3  

Trinidad and Tobago 19,561 5.4 4.5 0.9 277               1.4  

United States Virgin Islands 1,202 4.6 4.2 0.4 7               0.6  

       

South America  

Argentina 306,979 7.9 3.4 4.5 20,385               6.6  

Bolivia 50,854 5.7 4.4 1.3 1,095               2.2  

Brazil 1,161,922 8.9 2.9 6.1 94,216               8.1  

Chile 108,995 10 2.4 7.6 11,202             10.3  

Colombia 247,981 8.2 2.7 5.5 20,045               8.1  

Ecuador 74,588 6.7 2.1 4.6 5,357               7.2  

Guyana 4,830 8 6.6 1.4 96               2.0  

Paraguay 29,665 9.2 6 3.2 1,374               4.6  

Peru 120,778 7.3 1.8 5.5 10,209               8.5  

Suriname 3,667 6.9 6.2 0.7 36               1.0  

Uruguay 30,980 6.5 2.4 4.1 1,967               6.3  

Venezuela 247,407 10.6 4.3 6.2 21,185               8.6  
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Country name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

 
      

Europe  

Albania 20,072 19.8 8.6 11.2 2,458             12.2  

Andorra 654 13.4 5.8 7.6 65               9.9  

Austria 79,627 21.4 4.3 17.1 15,018             18.9  

Belarus 115,131 20.6 2.9 17.8 23,397             20.3  

Belgium 108,113 25.5 2.8 22.7 25,633             23.7  

Bosnia and Herzegovina 36,427 21 6.8 14.2 5,628             15.5  

Bulgaria 106,938 20.2 7.2 13 15,346             14.4  

Croatia 52,156 20.2 5.6 14.6 8,454             16.2  

Cyprus 7,171 15.4 9.2 6.3 543               7.6  

Czech Republic 109,205 26.2 3.4 22.8 25,467             23.3  

Denmark 51,600 16.3 2.1 14.2 9,202             17.8  

Estonia 14,761 12.6 1.6 11 2,227             15.1  

Finland 50,553 8.6 1.3 7.3 5,506             10.9  

France 562,481 18.1 3.4 14.7 97,242             17.3  

Georgia 51,550 23.3 10.2 13.1 6,670             12.9  

Germany 896,319 23.9 3.2 20.7 198,569             22.2  

Greece 116,757 15.6 8.1 7.5 10,616               9.1  

Hungary 128,981 24.7 4.7 20 26,863             20.8  

Iceland 1,891 2.6 1.6 1 31               1.6  

Ireland 30,421 8.3 2 6.4 2,902               9.5  

Italy 622,080 18.8 6 12.8 89,412             14.4  

Kazakhstan 126,168 17.1 9.2 7.9 11,343               9.0  
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Country name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

Latvia 31,672 16.2 2 14.3 5,719             18.1  

Lithuania 40,380 21.4 2.3 19.1 8,729             21.6  

Malta 3,593 16 11.4 4.6 193               5.4  

Moldova 43,245 25.4 5.2 20.2 8,922             20.6  

Montenegro 6,223 18 7.9 10.1 724             11.6  

Netherlands 143,387 24.2 2.7 21.5 32,972             23.0  

Norway 29,299 5.9 1.4 4.5 2,065               7.0  

Poland 393,724 26.5 3.1 23.4 93,842             23.8  

Portugal 104,738 8.9 3.7 5.2 8,032               7.7  

Romania 269,933 23.9 6.2 17.7 49,583             18.4  

Russia 1,833,839 19 4.9 14.1 289,922             15.8  

Serbia 100,172 24.8 6.9 17.9 18,076             18.0  

Slovakia 53,258 24.9 4.1 20.8 11,522             21.6  

Slovenia 19,680 21.7 5.3 16.3 3,528             17.9  

Spain 418,063 12.9 4.8 8.1 44,603             10.7  

Sweden 88,058 10 1.6 8.5 10,548             12.0  

Switzerland 62,993 20.3 4.6 15.8 11,196             17.8  

Turkey 361,723 18.2 8.1 10.1 41,811             11.6  

Ukraine 731,672 19.4 5.1 14.3 120,217             16.4  

United Kingdom 579,747 15.4 2 13.5 99,069             17.1  
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Country name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

 Africa  

Algeria 142,304 31.4 20.5 10.9 13,295               9.3  

Angola 100,845 15.4 14.1 1.3 1,537               1.5  

Benin 42,616 40.4 36.2 4.2 1,450               3.4  

Botswana 12,721 8.2 6 2.1 397               3.1  

Burkina Faso 84,040 55.9 54.6 1.3 855               1.0  

Burundi 44,973 16.2 15.4 0.8 419               0.9  

Cameroon 118,759 39.7 38.2 1.5 1,520               1.3  

Cape Verde 2,545 66.9 66 0.9 18               0.7  

Central African Republic 41,111 30.7 30.1 0.6 178               0.4  

Chad 56,523 59.8 58.7 1 460               0.8  

Comoros 3,878 1.6 1.4 0.1 9               0.2  

Congo 21,705 20.6 19.3 1.3 287               1.3  

Cote d'Ivoire 111,211 29.3 28.2 1.1 1,065               1.0  

Democratic Republic of the Congo 419,021 21.3 20.7 0.6 2,261               0.5  

Djibouti 4,509 21.2 17.5 3.8 164               3.6  

Egypt 392,226 56.7 40.2 16.5 46,783             11.9  

Equatorial Guinea 4,679 10 9.5 0.5 32               0.7  

Eritrea 20,386 31.3 28.5 2.8 444               2.2  

Ethiopia 287,855 17 15.2 1.8 5,657               2.0  

Gabon 13,783 11 10.5 0.5 90               0.7  

Gambia 9,610 58 56 2 151               1.6  
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Country name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

Ghana 149,177 31.5 28.9 2.6 3,361               2.3  

Guinea 63,691 49.7 48.8 1 467               0.7  

Guinea-Bissau 9,223 51.9 50.6 1.3 89               1.0  

Kenya 219,806 8.3 6.4 2 6,035               2.7  

Lesotho 25,223 12.6 7.5 5.1 1,689               6.7  

Liberia 19,482 25.3 24.7 0.7 113               0.6  

Libya 26,745 42.3 34.3 8 1,565               5.9  

Madagascar 97,088 3.7 3.3 0.4 641               0.7  

Malawi 83,919 9.9 9.4 0.6 681               0.8  

Mali 69,737 60.3 59.3 1 555               0.8  

Mauritania 13,520 98.7 97.4 1.3 159               1.2  

Mauritius 9,564 1.6 1.3 0.3 43               0.4  

Morocco 186,609 23.8 16.9 6.9 12,436               6.7  

Mozambique 163,474 6.8 6.3 0.5 1,309               0.8  

Namibia 12,923 11.1 10.2 0.9 159               1.2  

Niger 63,052 73.3 71.6 1.7 844               1.3  

Nigeria 689,902 59.7 54.9 4.8 25,282               3.7  

Rwanda 43,547 16.4 15.2 1.2 557               1.3  

Sao Tome and Principe 821 5.5 5.4 0.1 2               0.2  

Senegal 61,877 71.2 69.3 1.8 916               1.5  

Seychelles 702 1.5 1.2 0.3 4               0.6  

Sierra Leone 33,549 42 41 0.9 230               0.7  

Somalia 47,288 9.5 8.3 1.3 789               1.7  
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Country name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

South Africa 487,500 21.9 11.7 10.2 45,134               9.3  

Sudanc 165,624 35.3 33.6 1.7 2,197               1.3  

Swaziland 9,954 10.6 6.7 3.9 534               5.4  

Tanzania 202,713 6.9 6.4 0.5 1,660               0.8  

Togo 34,797 36.6 34.4 2.1 617               1.8  

Tunisia 59,521 25.5 17.1 8.3 4,711               7.9  

Uganda 127,825 13.1 11.8 1.3 2,018               1.6  

Zambia 71,697 12.7 12.2 0.6 511               0.7  

Zimbabwe 88,229 10.5 9 1.6 1,797               2.0  

       

Western Asia & the Middle East  

Afghanistan 148,817 20.9 13.9 7 11,153               7.5  

Armenia 25,420 22.6 11.9 10.7 2,721             10.7  

Azerbaijan 85,764 29.8 17.6 12.2 8,733             10.2  

Bahrain 3,315 33.1 30.2 2.9 73               2.2  

Iran 330,324 28.5 23.8 4.7 13,168               4.0  

Iraq 95,874 30.1 26.4 3.7 2,942               3.1  

Israel 40,291 21.2 14.4 6.9 2,776               6.9  

Jordan 13,031 22.9 16.6 6.2 766               5.9  

Kuwait 5,120 37.4 34.4 3 110               2.1  

Kyrgyzstan 29,441 17.3 8.4 8.9 3,041             10.3  

Lebanon 27,756 18 11.7 6.3 1,931               7.0  

Oman 7,482 46.5 40.6 5.8 321               4.3  
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Country name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

Palestine 12,562 22.7 15.6 7.1 853               6.8  

Qatar 4,252 35.2 31.7 3.5 109               2.6  

Saudi Arabia 82,403 32.6 29.6 3 1,893               2.3  

Syria 140,751 19.4 12.7 6.7 10,159               7.2  

Tajikistan 38,948 21.7 9.6 12.1 4,914             12.6  

Turkmenistan 51,096 31.7 26.4 5.3 2,124               4.2  

United Arab Emirates 16,636 54 45.8 8.1 1,000               6.0  

Uzbekistan 205,829 24.8 12.8 12 23,912             11.6  

Yemen 90,616 23 19.9 3.1 2,520               2.8  

       

Eastern Asia  

Bangladesh 692,081 58.9 6.7 52.3 252,927             36.5  

Bhutan 2,909 23.6 5.7 17.9 516             17.7  

Brunei 1,684 6.1 3.3 2.8 72               4.3  

Cambodia 85,803 20.9 11.6 9.2 8,445               9.8  

China 9,720,397 72.8 9.9 62.9 3,910,916             40.2  

China (2018)d 9,720,397 41 9.7 31.2 2,355,579             24.2  

India 8,009,357 52 9 42.9 2,458,384             30.7  

Indonesia 1,495,066 20.9 5.7 15.3 230,097             15.4  

Japan 1,284,769 22.6 4.6 18 242,561             18.9  

Laos 33,822 19.6 8 11.6 4,404             13.0  

Malaysia 154,090 18.9 5.3 13.6 22,228             14.4  

Maldives 865 5.9 2.3 3.7 50               5.8  
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Country name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

Mongolia 12,013 8.4 4.8 3.5 628               5.2  

Myanmar 340,623 16.4 7.4 9 36,978             10.9  

Nepal 168,690 38.8 9.5 29.3 39,066             23.2  

North Korea 201,841 35.8 5.3 30.5 52,942             26.2  

Pakistan 1,115,784 36.7 15.1 21.7 188,406             16.9  

Papua New Guinea 63,224 3.1 2.9 0.2 168               0.3  

Philippines 559,792 8.7 2.1 6.7 51,203               9.1  

Singapore 14,100 21.9 4.9 16.9 2,616             18.6  

South Korea 265,641 44 5.3 38.8 80,962             30.5  

Sri Lanka 116,032 13.4 3.5 9.9 14,998             12.9  

Taiwan 164,488 14.5 3.2 11.3 23,711             14.4  

Thailand 418,824 20.6 4.7 15.9 71,184             17.0  

Timor-Leste 5,381 6.4 5 1.4 115               2.1  

Vietnam 541,064 31.7 4.4 27.4 127,614             23.6        

 
Australia & Oceania  

American Samoa 301 0.7 0.7 0 0                0.0    

Australia 142,935 4.9 2.4 2.5 5,686               4.0  

Federated States of Micronesia 679 0.7 0.7 0 1               0.1  

Fiji 5,538 1.3 1.2 0.1 9               0.2  

Guam 1,112 1.2 1 0.2 4               0.4  

Kiribati 852 0.8 0.8 0 0                0.0    

Marshall Islands 336 1.1 1.1 0 0                0.0    



 

 22 

Country name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

New Zealand 29,923 2.2 1.5 0.6 320               1.1  

Northern Mariana Islands 249 1.3 1.1 0.3 1               0.4  

Samoa 960 0.7 0.7 0 0                0.0    

Solomon Islands 3,286 1.2 1.2 0 2               0.1  

Tonga 657 1.2 1.1 0.1 1               0.2  

Vanuatu 1,791 2.2 2.2 0.1 2               0.1  

       

       

USA 

State name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

Alabama 50,411 9.4 2.6 6.9 5,067             10.1  

Alaska 3,384 2.2 1.4 0.9 51               1.5  

Arizona 56,565 7.9 4 3.9 3,263               5.8  

Arkansas 26,345 10.3 2.6 7.6 2,887             11.0  

California 259,363 12.2 2.4 9.8 34,081             13.1  

Colorado 36,885 6.8 3 3.8 2,140               5.8  

Connecticut 32,639 12.1 1.7 10.5 4,749             14.6  

Delaware 4,436 13.2 1.7 11.5 694             15.6  

Florida 191,646 6.6 2.4 4.2 12,483               6.5  

Georgia 75,518 11.3 2.5 8.8 9,290             12.3  
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State name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

Hawaii 11,032 2.6 2.1 0.4 83               0.8  

Idaho 13,006 6.2 3.3 2.8 581               4.5  

Illinois 102,593 16.6 1.9 14.7 18,952             18.5  

Indiana 66,979 17 1.9 15.1 12,637             18.9  

Iowa 33,378 11.9 2.1 9.8 4,562             13.7  

Kansas 33,671 10.4 1.9 8.5 4,094             12.2  

Kentucky 52,325 14.3 2 12.4 8,500             16.2  

Louisiana 42,176 10.4 2.8 7.5 4,505             10.7  

Maine 14,555 7.7 1.6 6.1 1,350               9.3  

Maryland 40,784 15.8 1.8 14.1 7,336             18.0  

Massachusetts 53,851 11.8 1.6 10.2 7,654             14.2  

Michigan 93,585 16.7 1.8 14.9 17,438             18.6  

Minnesota 39,674 13.3 2.2 11.1 5,877             14.8  

Mississippi 40,360 10 2.6 7.3 4,263             10.6  

Missouri 48,205 11.2 2.1 9.1 6,161             12.8  

Montana 9,520 5.1 3.4 1.7 266               2.8  

Nebraska 13,881 9 2.1 7 1,432             10.3  

Nevada 23,541 6.7 3.4 3.3 1,192               5.1  

New Hampshire 12,314 10 1.6 8.3 1,495             12.1  

New Jersey 97,747 15.7 1.6 14.1 17,646             18.1  

New Mexico 21,308 4.9 2.2 2.7 938               4.4  

New York 129,489 14.6 1.6 13 21,931             16.9  

North Carolina 95,239 12.5 2.2 10.3 13,357             14.0  
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State name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

       

North Dakota 4,070 6.9 2 4.9 309               7.6  

Ohio 115,955 16.8 1.7 15 21,818             18.8  

Oklahoma 40,908 8.7 1.9 6.8 4,190             10.2  

Oregon 38,128 8.1 2.4 5.6 3,152               8.3  

Pennsylvania 133,771 17.1 1.7 15.4 25,382             19.0  

Rhode Island 4,910 10 1.6 8.3 597             12.2  

South Carolina 51,014 10.9 2.5 8.4 6,048             11.9  

South Dakota 7,036 7.4 2.1 5.4 574               8.2  

Tennessee 67,804 11.4 2.1 9.3 8,844             13.0  

Texas 183,885 8.4 1.9 6.4 17,663               9.6  

Utah 16,534 6.5 2.7 3.8 981               5.9  

Vermont 6,415 9.8 1.6 8.2 770             12.0  

Virginia 71,555 13.9 2 11.9 11,206             15.7  

Washington 50,955 7.7 2.3 5.4 4,138               8.1  

West Virginia 22,500 11 1.9 9.1 2,900             12.9  

Wisconsin 59,470 14.7 2 12.7 9,842             16.5  

Wyoming 3,642 4.7 2.8 1.9 114               3.1  
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Canada 

Province name 
Total Deaths >14 

years old 

Mean population weighted annual 

PM2.5 (μg m-3) 
Attributable 

deathsa 

Mean 

attributable 

fraction (%)b 

With all 

emission 

sources 

Without 

fossil 

fuel 

Estimated 

fossil fuel 

PM2.5 

Alberta 21,535 8 2 6 1,958               9.1  

British Columbia 33,403 8.7 1.9 6.8 3,237               9.7  

Manitoba 9,868 7.9 2.7 5.2 778               7.9  

New Brunswick 7,095 4.8 1.5 3.4 391               5.5  

Newfoundland & Labrador 1,588 2.4 1.4 1 27               1.7  

Northwest Territories 172 3.2 2.8 0.4 1               0.6  

Nova Scotia 9,158 4.9 1.6 3.3 497               5.4  

Nunavut 129 1.2 0.8 0.4 1               0.8  

Ontario 90,996 15 1.6 13.4 15,728             17.3  

Prince Edward Island 1,269 4.3 1.4 2.9 61               4.8  

Quebec 66,494 13.9 1.6 12.3 10,645             16.0  

Saskatchewan 8,515 7.5 2.4 5.2 678               8.0  

Yukon Territory 193 1.1 0.9 0.3 1               0.5  

 

a Annual number of deaths attributed to long term exposure to PM2.5 generated by fossil fuel combustion.  

b Mean proportion of deaths attributed to long term exposure to fossil-fuel related PM2.5.   

c Includes South Sudan 

d Estimates derived after applying a 43.7% reduction to PM2.5 from all sources for China
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Aims The risk of mortality from the coronavirus disease that emerged in 2019 (COVID-19) is increased by comorbidity
from cardiovascular and pulmonary diseases. Air pollution also causes excess mortality from these conditions.
Analysis of the first severe acute respiratory syndrome coronavirus (SARS-CoV-1) outcomes in 2003, and prelimi-
nary investigations of those for SARS-CoV-2 since 2019, provide evidence that the incidence and severity are
related to ambient air pollution. We estimated the fraction of COVID-19 mortality that is attributable to the long-
term exposure to ambient fine particulate air pollution.

....................................................................................................................................................................................................
Methods
and results

We characterized global exposure to fine particulates based on satellite data, and calculated the anthropogenic
fraction with an atmospheric chemistry model. The degree to which air pollution influences COVID-19 mortality
was derived from epidemiological data in the USA and China. We estimate that particulate air pollution contributed
�15% (95% confidence interval 7–33%) to COVID-19 mortality worldwide, 27% (13 – 46%) in East Asia, 19% (8–
41%) in Europe, and 17% (6–39%) in North America. Globally, �50–60% of the attributable, anthropogenic fraction
is related to fossil fuel use, up to 70–80% in Europe, West Asia, and North America.

....................................................................................................................................................................................................
Conclusion Our results suggest that air pollution is an important cofactor increasing the risk of mortality from COVID-19. This

provides extra motivation for combining ambitious policies to reduce air pollution with measures to control the
transmission of COVID-19.
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1. Introduction

Poor air quality, especially from fine particulate matter with a diameter
<2.5 mm (PM2.5), is one of the leading risk factors, and responsible for
many excess deaths.1,2 The global loss of life expectancy from long-term
exposure to ambient air pollution exceeds that of infectious diseases,
and is comparable with that of tobacco smoking.1–3 The mortality from
COVID-19 depends on comorbidities, including conditions that increase
cardiovascular risks such as arterial hypertension, diabetes mellitus, obe-
sity, and established coronary artery disease, as well as respiratory

conditions such as asthma and chronic obstructive pulmonary disease
(COPD), being similar to those that are influenced by air pollution.3–6

The risk of death is strongly related to age, being particularly high in
those aged >70. It is also higher amongst males, economically disadvan-
taged populations, and in some ethnic groups. In assessing the relation-
ships between exposures to risk factors and outcomes, potential
confounders therefore need to be accounted for in the design of studies
and in data analysis. These include the age distribution of the population,
availability of hospital beds (and intensive care capacity), and the propor-
tion of the population living in poverty.

* Corresponding authors. Jos Lelieveld: Tel: þ49 6131 305 4000, Fax: þ49 6131 305 4019, Email: jos.lelieveld@mpic.de or Thomas Münzel: Tel: þ49 6131 17 7250, Fax: þ49 6131 17
6615, Email: tmuenzel@uni-mainz.de
VC The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which
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A recent study, using an ecological design, assessed how environmen-

tal influences modify the severity of COVID-19 outcomes in the USA.7

Potential confounders were identified, and statistical models were used
to relate long-term exposure to ambient PM2.5 to COVID-19 deaths.
The computed mortality rate ratios (MRRs) express the relative increase
in COVID-19 deaths for each microgram per cubic meter increment of
PM2.5 in ambient air. The PM2.5 data were derived from satellite and
ground-based measurements combined with atmospheric modelling,8

and the confounders were determined from county-level censuses,
homeland infrastructure, and meteorological data. Here we test the as-
sumption that the derived MRRs are representative for the populations
of other countries (China) and consider the global impact. In the present
study, we apply the MRRs to estimate the excess mortality, i.e. the frac-
tion of COVID-19 deaths that could be avoided if the population were
exposed to lower counterfactual air pollution levels without fossil fuel-
related and other anthropogenic emissions. We emphasize that our
results are provisional, based on epidemiological data collected up to the
third week of June 2020, and a comprehensive evaluation will need to
follow after the COVID-19 pandemic.

1.1 SARS and air pollution
In the early 2000s, the first severe acute respiratory syndrome coronavi-
rus (SARS-CoV-1) appeared in China (Guangdong Province). The virus
was zoonotic, as it originally developed in bats.9 The World Health
Organization (WHO) reported that it resulted in a SARS epidemic with
>8000 cases in 26 countries, mostly in south-east Asia and in Canada.8

The disease emerged in November 2002 and was contained in July 2003.
SARS-CoV-1 and SARS-CoV-2 have many similarities, as their RNA
genomes are closely related and the viruses enter the host cells by bind-
ing to the same entry receptor angiotensin-converting enzyme 2
(ACE2).10–12 About 2–14 days after infection, the systemic symptoms of
both diseases are alike, and a similar fraction of patients develops severe
symptoms with a mortality rate that increases strongly with advanced
age.13–16 In China alone, >5000 cases of SARS-CoV-1 were reported,
leading to nearly 350 fatalities. Since the exposure to ambient air pollu-
tion is associated with respiratory and cardiovascular diseases, it was hy-
pothesized that health outcomes of SARS were aggravated by poor air
quality. A study in 2003 corroborated that in parts of China with moder-
ate levels of air pollution, the risk of dying from the disease was >80%
higher compared with areas with relatively clean air, while in heavily pol-
luted regions the risk was twice as high.17

1.2 COVID-19 and air pollution
In 2019, the related second virus strain appeared (SARS-CoV-2) in
China (Hubei Province), which also developed in bats,4 causing COVID-
19, which grew from an epidemic into a pandemic in the early part of
2020. A Chinese analysis indicated that the risk of symptomatic infection
typically increases by �4% for each year of age between 30 and 60, and
that the lethality is highest for individuals >60 years.15COVID-19 is asso-
ciated with a combination of respiratory and cardiovascular complica-
tions, which may comprise myocardial infarction, heart failure, venous
thrombo-embolisms, and increases in biomarkers,18 which are also
found in connection with high levels of air pollutants.5 In a recent analysis
of 5700 patients hospitalized with COVID-19 in the New York City
area, the most common comorbidities were hypertension (57%), obesity
(42%), and diabetes (34%),19 representing cardiovascular risk factors
that are also observed in relation to elevated PM2.5 concentrations,5,20

suggesting additive or synergistic effects on the cardiovascular system. In

addition, advanced age is a strong risk factor for cardiovascular disease,
and the effects on immune function may be equally important for
COVID-19 susceptibility. The age dependency coincides with that of ex-
cess mortality from PM2.5.

3,15 The COVID-19 mortality rate has been es-
timated to be �4% in symptomatic cases, in part because pre-existing
conditions such as cardiovascular and respiratory disorders increase the
risk.21

Considering the cardiovascular and respiratory health impacts of air
pollution, the relationship to COVID-19 mortality is not unexpected.
Preliminary studies addressed the influence of air pollution on COVID-
19 in different regions. In China, the incidence of COVID-19 was found
to be significantly enhanced by PM2.5,

22 while a correlation between am-
bient PM2.5 and the mortality rate was also established.23 In Italy, it was
found that the high pollution concentrations that are typical for the Po
valley, especially in the Lombardy region of which Milan is the capital,
were associated with a high mortality rate.24 As mentioned above, in the
USA the severity of COVID-19 outcomes was linked to PM2.5 exposure,
making use of Medicare data for >60 million people and nationwide air
quality measurements.7 Data were collected for 98% of the population
in 3087 of the total number of 3142 counties, of which �42% had
reported COVID-19 deaths up to the third week of April 2020. The
death counts relied on data from the Coronavirus Resource Center of
the Johns Hopkins University.25 The study accounted for 20 potential
confounding factors including population size, age distribution, popula-
tion density, time period since the beginning of the outbreak, time
elapsed since the home confinements, hospital beds, number of individu-
als tested, meteorological conditions, and socioeconomic and risk fac-
tors such as obesity and smoking.7 The results showed significant
overlap between the causes of death in COVID-19 patients and those
that lead to mortality from PM2.5. The MRR, i.e. the percentage increase
of COVID-19 mortality risk per mg/m3 increase of exposure to PM2.5,
was found to be 8%, with a 95% confidence interval of 2–15%.7 The cal-
culations are continually updated based on the most recent data (up to
18 June at the time of writing), showing no significant changes in the MRR
in the preceding 4 months.

2. Methods

2.1 Global model and data
We applied a global atmospheric chemistry general circulation model
(EMAC) which comprehensively simulates atmospheric chemical and meteo-
rological processes and interactions with the oceans and the biosphere, in
the same set-up as in recent studies on climate change, air pollution, and pub-
lic health.3,26 In addition to the standard simulation, we performed two sensi-
tivity calculations: (i) with fossil fuel-related emissions removed and (ii) with
all anthropogenic emissions removed. The model results were used to esti-
mate the ratio of fine particulates in simulation (i) and (ii) and the standard
simulation. The annual atmospheric near-surface PM2.5 concentrations were
taken from model-integrated satellite data, for the year 2019.8,27 The hori-
zontal resolution is 0.01 by 0.01 degrees, corresponding to a grid size of �1
km � 1 km. The near-surface concentrations of PM2.5 for fossil fuel-related
and all anthropogenic emissions are estimated by scaling this data set to the
ratios (i) and (ii) obtained with the EMAC model simulations.

2.2 Relative risk
To estimate the relative risk (RR or hazard ratio) of excess COVID-19 mor-
tality from the long-term exposure to air pollution, we used the exposure–
response function of the WHO,28
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RR ¼ X þ 1
X0 þ 1

� �b

;

RR is a function of the concentration of air pollutants, which specifies an-
nual average exposure dependent on location (grid cell) derived from the
data mentioned above. X is the pollutant (PM2.5) and X0 is the pollutant
threshold concentration below which exposure does not have implications
for public health. Both b and X0 are estimated by fitting to data from the liter-
ature with a least square method (Figure 1). We adopted the threshold PM2.5

concentration (X0) from Burnett et al.2 (i.e. < 2.4 lg/m3 PM2.5), forcing the
curve fitting into this range. We tested different exposure–response func-
tions, e.g. of Burnett et al.,2 and values for X0, and find that the results are not
sensitive to these assumptions.

Because the COVID-19 mortality rate ratio due to air pollution, based on
data in the USA alone,7 may not represent countries with very high fine parti-
cle concentrations (associated with a lack of observations in such regions),
we investigated the effect of including data from the enhanced mortality rate
derived for the Chinese SARS epidemic in 2003.17 We make the assumption
that SARS and COVID-19 mortality are similarly affected by long-term expo-
sure to air pollution. Since the analysis for SARS was based on the Chinese
Air Pollution Index (API), we converted the API to PM2.5 concentrations fol-
lowing empirical relationships from the literature.29,30 The large uncertainty
range in the fitting function to a large degree derives from those in these rela-
tionships (black squares and ranges in Figure 1). In spite of uncertainties, the
curves for the USA only and those that include the Chinese results are al-
most identical, providing confidence in the function derived for conditions in
the USA only.

2.3 Attributable fraction
We calculated RR globally using PM2.5 distributions calculated under the
standard scenario. The attributable fraction (AF) of COVID-19 mortality to
air pollution is calculated from the RR by AF = 1 – 1/RR. From the globally
distributed, gridded AFs, we aggregated into regional and country-level AFs,
weighted according to the population density, in order to account for the
varying population distributions within regions and countries. The population
data for the year 2020 were obtained from the NASA Socioeconomic Data
and Applications Center (SEDAC), hosted by the Columbia University
Center for International Earth Science Information Network (CIESIN).31

Our definition of AF does not imply a direct cause–effect relationship be-
tween air pollution and COVID-19 mortality (although it is possible). Instead
it refers to relationships between the two, direct and indirect, i.e. by aggravat-
ing comorbidities that could lead to fatal health outcomes of the virus
infection.

3. Results

3.1 Attribution of COVID-19 mortality
To estimate the AF from exposure to ambient PM2.5 to COVID-19 mor-
tality, we used the epidemiological data from the USA (red curve in
Figure 1). The chronic exposure to PM2.5 in the years prior to the
COVID-19 outbreak was estimated on the basis of satellite observations
over the year 2019. The anthropogenic and fossil fuel-related fractions
were calculated with the global EMAC model. Here we focus on anthro-
pogenic and fossil fuel-related PM2.5 to determine the impact of poten-
tially avoidable air pollution on COVID-19 mortality. Figure 2 and Table 1
present the average fractions of COVID-19 mortality attributed to the
exposure to PM2.5 pollution, both globally and regionally. Table S1 (avail-
able as Supplementary material online) lists the results for all countries.
To account for the different population distributions within countries,
e.g. between rural and urban areas, the averages have been weighted
accordingly.

In regions with strict air quality standards and relatively low levels of
air pollution, such as Australia, the attributable fraction by human-made
air pollution to COVID-19 mortality is found to be a few percent only.
Relatively high fractions occur in parts of east Asia (�35%), central
Europe (�25%), and eastern USA (�25%). The country-level contribu-
tion to COVID-19 that we find for China, i.e. 27% (95% confidence inter-
val 13 – 47%), agrees well with that found for the SARS epidemic in
2003.17 The largest country-average fractions are found in the Czech
Republic, Poland, China, North Korea, Slovakia, Austria, Belarus, and
Germany, all above 25% (Supplementary material, Table S1). Globally,
anthropogenic air pollution contributes �15% (7 – 33%) to COVID-19
mortality, which could have been largely prevented, for example by
adopting the air quality regulations applied in Australia (annual PM2.5 limit
of 8 mg/m3). The global mean contribution of fossil fuel use to the anthro-
pogenic fraction is �56%, being highest in North America (83%), West
Asia (75%), and Europe (68%) (Table 1).

4. Discussion

4.1 Pathophysiological aspects
Both the air pollutant PM2.5 and the SARS-CoV-2 virus enter the lungs
via the bronchial system (portal organ), with potential systemic health
impacts through the blood circulation. Both PM2.5 and SARS-CoV-2
cause vascular endothelial dysfunction, oxidative stress, inflammatory
responses, thrombosis, and an increase in immune cells.32–36 The SARS-
CoV-2 infection facilitates the induction of endothelial inflammation in

Figure 1 Exposure-response dependencies, based on a log-normal
relationship28. The relative risk (or hazard ratio), from which the attrib-
utable fraction has been derived, is based on mortality rate ratios attrib-
uted to air pollution in the COVID-19 pandemic7 and the SARS
epidemic17, indicated by the black bullet and squares, respectively. The
triangle represents the threshold concentration below which
PM2.5does not have health implications2. The red curves depict the
function fitted to the data from COVID-19 in the USA only7, plus the
threshold2 (triangle and bullet). The blue curves depict the function fit-
ted to all data2,7,17. The colored ranges show the 95% confidence inter-
vals, which are wider after including the SARS-related results (blue),
mostly due to uncertainty from converting Chinese API’s into
PM2.5concentrations (black squares).
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..several organs as a direct consequence of viral cytotoxic effects and the
host inflammatory response, which can aggravate pre-existing chronic
respiratory and vascular (coronary) dysfunction, and cause lung injury by
alveolar damage, as well as stroke and myocardial infarction by inducing
plaque rupture.37 Potential common pathophysiological mechanisms of
increased risk thus relate to endothelial injury33,38 and pathways that reg-
ulate immune function.39,40 Further, there are strong indications of in-
creased susceptibility to viral infections from exposure to air
pollution.41–46

Lung injuries, including the life-threatening acute respiratory distress
syndrome and respiratory failure, as well as acute coronary syndrome,
arrhythmia, myocarditis, and heart failure, were shown to be clinically
dominant, leading to critical complications of COVID-19.47,48 Recent
studies in China, the USA, as well as Europe indicate that patients with
cardiovascular risk factors or established cardiovascular disease and
other comorbid conditions are predisposed to myocardial injury during

the course of COVID-19.19,46,49–52 From the available information, it
thus follows that air pollution-induced inflammation leads to greater vul-
nerability and less resiliency, and the pre-conditions increase the host
vulnerability. Air pollution causes adverse events through myocardial in-
farction and stroke, and it is an additional factor capable of increasing
blood pressure, while there is emerging evidence for a link with type 2 di-
abetes and a possible contribution to obesity and enhanced insulin resis-
tance.36 Bronchopulmonary and cardiovascular pre-conditions, including
hypertension, diabetes, coronary artery disease, cardiomyopathy,
asthma, COPD, and acute lower respiratory illness, all negatively influ-
enced by air pollution, lead to a substantially higher mortality risk in
COVID-19. Furthermore, it seems likely that fine particulates prolong
the atmospheric lifetime of infectious viruses, thus favouring transmis-
sion.53 It is possible that future research will reveal additional pathways
that mediate the relationship between air pollution and the risk of death
from COVID-19.

Figure 2 Estimated percentages of COVID-19 mortality attributed to air pollution from all anthropogenic sources (top), and from fossil fuel use only
(bottom). The regions with high attributable fractions coincide with high levels of air pollution. The mapped results account for population density, thus
reflecting population weighted exposure to PM2.5.
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..4.2 Limitations
Our results indicate that the long-term exposure to high levels of fine
particulate matter is a significant cofactor that influences the severity of
COVID-19 outcomes. Since PM2.5 in China and the USA, from which ep-
idemiological data have been used, is dominated by anthropogenic sour-
ces that are potentially preventable, we focus our analysis on this
fraction of PM2.5. The good agreement of our results for the USA and
China is in line with recent studies, showing that the association between
air pollution and excess mortality is valid for many different countries.2,55

Nevertheless, the calculations of RRs (hazard ratios) and the AF to mor-
tality rely on the use of data from an ecological study design that has limi-
tations, even though 19 county-level variables and one state-level
variable, some of which are more important than air pollution, were con-
sidered as potential confounders in the analysis—and the PM2.5 expo-
sure data have been extensively cross-validated.7 However, we
acknowledge that residual confounding cannot be excluded. While
cross-sectional ecological studies do not allow conclusions about cause–
effect relationships, the biological mechanisms of air pollution-related
disorders, acting as comorbidities in COVID-19, are well docu-
mented.56,57 Recent studies in England and The Netherlands corrobo-
rate the positive relationships between air pollution and the number of
COVID-19 cases, hospital admissions, and mortality.58–60 The reported
MRRs for PM2.5 range from 1–7% to 13–21% (we applied 2–15%), which
confirms the significant role of air pollution but emphasizes the large un-
certainty ranges. Furthermore, our approach is likely to realistically ap-
proximate the contribution of fossil fuels and other anthropogenic
sources to the total excess deaths through long-term ambient PM2.5 air
pollution exposure.

We reiterate that the data used for China are associated with substan-
tial uncertainty, and underly the assumption that comorbidity and mor-
tality from air pollution in COVID-19 are the same as in SARS.
Nonetheless, using these data does not change the results, providing
confidence in the robustness of our findings. We emphasize that the
data relevant to the present study are from upper-middle and high-
income countries, and the representativeness of our results for low-
income countries may be limited, and uncertainties are likely to exceed
the 95% confidence intervals. It is expected that in countries with high
levels of aeolian dust, e.g. in Africa and West Asia, PM2.5 pollution is also
a cofactor but with less contribution from human activities. Household
air pollution is also likely to be important, being of particular relevance in

low-income countries.61 It will be critical to collect epidemiological evi-
dence from many regions with different socio-economic and environ-
mental conditions, to support analyses of the COVID-19 pandemic and
investigate the role of environmental factors. The uncertainty ranges
that accompany our results are considerable but, taking into account the
biological plausibility of the relationship and the strong evidence of the
impact of air pollution on conditions that are known to increase
COVID-19 mortality, they can nevertheless inform policy decisions.

4.3 Short- and long-term health impacts
A new, though preliminary, finding of the present study is that a signifi-
cant fraction of worldwide COVID-19 mortality is attributable to an-
thropogenic air pollution, of which�50 – 60% is related to fossil fuel use
(�70 – 80% in Europe, West Asia, and North America). This represents
potentially avoidable, excess mortality. The links between economic ac-
tivity, traffic, energy use, and public health have been illustrated by the
strong reduction of air pollution in many locations during the lockdown
measures.62,63 There is ample evidence for a relationship between short-
term exposure to PM2.5 and adverse health effects, including excess
mortality from cardiovascular and respiratory diseases.55 While it is in
principle possible to disentangle the acute from the chronic outcomes
from short- and long-term exposure to air pollution,64 at this stage it is
difficult to make that distinction for PM2.5-induced comorbidity and mor-
tality from COVID-19. Generally, short-term associations between air
pollution and mortality are substantially less than those from long-term
exposure, due to the more persistent, cumulative effects from the lat-
ter.65 By relating air pollution anomalies to short-term health outcomes
during the COVID-19-induced societal lockdown, it was found that in
China alone >4600 excess deaths may have been avoided.62 This can be
viewed as a health co-benefit from the containment measures, which
may reduce air pollution-induced COVID-19 mortality. Such benefits
could also be achieved after the COVID-19 lockdown. Both perspec-
tives of air pollution during the pandemic underscore the important role
of fossil fuel-related and other anthropogenic emissions.

4.3 Future directions
Our results suggest the potential for substantial benefits from reducing
air pollution exposure even at relatively low PM2.5 levels. Refinement of
the exposure–response relationship and reducing uncertainties will re-
quire additional data analyses, including from large cohort studies as the
COVID-19 pandemic evolves, but may appear too late to guide

........................................................................................................................

..............................................................................................................................................................................................................................

Table 1 Regional percentages of COVID-19 mortality attributed to fossil fuel-related and all anthropogenic sources of air
pollution

Region Population (million) COVID-19 mortality fraction attributed to air pollution (%)

Fossil fuel-related emissions All anthropogenic emissions

Europe 628 13 (6–33) 19 (8–41)

Africa 1345 2 (1–19) 7 (3–25)

West Asia 627 6 (3–25) 8 (4–27)

South Asia 2565 7 (3–22) 15 (8–31)

East Asia 1685 15 (8–32) 27 (13–46)

North America 525 14 (6–36) 17 (6–39)

South America 547 3 (1–23) 9 (4–30)

Oceania 28 1 (0–20) 3 (1–23)

World 7950 8 (4–25) 15 (7–33)

The 95% confidence levels are given in parentheses.
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.
decision-making. A lesson from our environmental perspective of the
COVID-19 pandemic is that the quest for effective policies to reduce an-
thropogenic emissions, which cause both air pollution and climate
change, needs to be accelerated. The pandemic ends with the vaccina-
tion of the population or with herd immunity through extensive infection
of the population. However, there are no vaccines against poor air qual-
ity and climate change. The remedy is to mitigate emissions. The transi-
tion to a green economy with clean, renewable energy sources will
further both environmental and public health locally through improved
air quality and globally by limiting climate change.

Supplementary material

Supplementary material is available at Cardiovascular Reseach online.
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Translational perspective
COVID-19 infections and air pollution cause excess mortality from cardiovascular and pulmonary diseases. We estimated the fraction of COVID-
19 mortality attributable to the long-term exposure to ambient fine particulate air pollution (PM2.5). Global exposure to PM2.5 was characterized
based on satellite data, and the anthropogenic fraction was calculated with an atmospheric chemistry model. PM2.5 contributed �15% to COVID-
19 mortality worldwide, 27% in East Asia, 19% in Europe, and 17% in North America. Globally�50–60% of the attributable, anthropogenic fraction
is related to fossil fuel use, and 70–80% in Europe/West Asia/North America, indicating the potential for substantial health benefits from reducing air
pollution exposure.
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C O R O N A V I R U S

Air pollution and COVID-19 mortality in the United 
States: Strengths and limitations of an ecological 
regression analysis
X. Wu1*, R. C. Nethery1*, M. B. Sabath1, D. Braun1,2, F. Dominici1†

Assessing whether long-term exposure to air pollution increases the severity of COVID-19 health outcomes, 
including death, is an important public health objective. Limitations in COVID-19 data availability and quality 
remain obstacles to conducting conclusive studies on this topic. At present, publicly available COVID-19 outcome 
data for representative populations are available only as area-level counts. Therefore, studies of long-term expo-
sure to air pollution and COVID-19 outcomes using these data must use an ecological regression analysis, which 
precludes controlling for individual-level COVID-19 risk factors. We describe these challenges in the context of 
one of the first preliminary investigations of this question in the United States, where we found that higher historical 
PM2.5 exposures are positively associated with higher county-level COVID-19 mortality rates after accounting for 
many area-level confounders. Motivated by this study, we lay the groundwork for future research on this important 
topic, describe the challenges, and outline promising directions and opportunities.

INTRODUCTION
The suddenness and global scope of the coronavirus disease 2019 
(COVID-19) pandemic have raised urgent questions that require 
coordinated investigation to slow the disease’s devastation. A critically 
important public health objective is to identify key modifiable environ-
mental factors that may contribute to the severity of health outcomes 
[e.g., intensive care unit (ICU) hospitalization and death] among 
individuals with COVID-19. Numerous scientific studies reviewed 
by the U.S. Environmental Protection Agency (EPA) have linked 
fine particles (PM2.5; particles with diameter, ≤ 2.5 m) to a variety 
of adverse health events (1) including death (2). It has been hypothe-
sized that because long-term exposure to PM2.5 adversely affects 
the respiratory and cardiovascular systems and increases mortality 
risk (3–5), it may also exacerbate the severity of COVID-19 symp-
toms and worsen the prognosis of this disease (6).

Epidemiological studies to estimate the association between 
long-term exposure to air pollution and COVID-19 hospitalization 
and death is a rapidly expanding area of research that is attracting 
attention around the world. Two studies have been published using 
data from European countries (7, 8), and many more are available 
as preprints. However, because of the unprecedented nature of the 
pandemic, researchers face serious challenges when conducting these 
studies. One key challenge is that, to our knowledge, individual-level 
data on COVID-19 health outcomes for large, representative popula-
tions are not publicly available or accessible to the scientific com-
munity. Therefore, the only way to generate preliminary evidence 
on the link between PM2.5 and COVID-19 severity and outcomes 
using these aggregate data is to use an ecological regression analysis. 
With this study design, publicly available area-level COVID-19 
mortality rates are regressed against area-level air pollution concentra-
tions while accounting for area-level potential confounding factors. 
Here, we discuss the strengths and limitations of conducting eco-

logical regression analyses of air pollution and COVID-19 health 
outcomes and describe additional challenges related to evolving 
data quality, statistical modeling, and control of measured and un-
measured confounding, paving the way for future research on this 
topic. We discuss these challenges and illustrate them in the context 
of a specific study, in which we investigated the impact of long-term 
PM2.5 exposure on COVID-19 mortality rates in 3089 counties in 
the United States, covering 98% of the population.

Illustration of an ecological regression analysis of historical 
exposure to PM2.5 and COVID-19 mortality rate
We begin by describing how to conduct an ecological regression anal-
ysis in this setting. COVID-19 death counts (a total of 116,747 deaths) 
were obtained from the Johns Hopkins University Coronavirus 
Resource Center and were cumulative up to 18 June 2020. We used 
data from 3089 counties, of which 1244 (40.3%) had reported zero 
COVID-19 deaths at the time of our analysis. Daily PM2.5 concen-
trations were estimated across the United States on a 0.01° × 0.01° grid 
for the period 2000–2016 using well-validated atmospheric chemistry 
and machine learning models (9). We used zonal statistics to aggregate 
PM2.5 concentration estimates to the county level and then averaged 
across the period 2000–2016 to perform health outcome analyses. 
Figure 1 illustrates the spatial variation in 2000–2016 average (here-
after referred to as “long-term average”) PM2.5 concentrations and 
COVID-19 mortality rates (per 1 million population) by county.

We fit a negative binomial mixed model using COVID-19 mortality 
rates as the outcome and long-term average PM2.5 as the exposure 
of interest, adjusting for 20 county-level covariates. We conducted 
more than 80 sensitivity analyses to assess the robustness of the 
findings to various modeling assumptions. We found that an in-
crease of 1 g/m3 in the long-term average PM2.5 is associated with 
a statistically significant 11% (95% CI, 6 to 17%) increase in the 
county’s COVID-19 mortality rate (see Table 1); this association 
continues to be stable as more data accumulate (fig. S3). We also 
found that population density, days since the first COVID-19 case 
was reported, median household income, percent of owner-occupied 
housing, percent of the adult population with less than high school 
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education, age distribution, and percent of Black residents are im-
portant predictors of the COVID-19 mortality rate in the model. 
We found a 49% (95% CI, 38 and 61%) increase in COVID-19 mortality 
rate associated with a 1-SD (per 14.1%) increase in percent Black resi-
dents of the county. Details on the data sources, statistical methods, 
and analyses are summarized in the Supplementary Materials. All data 
sources used in the analyses, along with fully reproducible code, are 
publicly available at https://github.com/wxwx1993/PM_COVID. 

Strengths and limitations of an ecological  
regression analysis
Ecological regression analysis provides a simple and cost-effective 
approach for studying potential associations between historical ex-
posure to air pollution and increased vulnerability to COVID-19 in 
large representative populations, as illustrated in our study in the 

previous section. This approach is regularly applied in many areas 
of research (10). Using our study as an example, we summarize 
in Table 2 the strengths, limitations, and opportunities considering 
(i) study design, (ii) COVID-19 health outcome data, (iii) historical 
exposure to air pollution, and (iv) measured and unmeasured 
confounders, with the goal of paving the way for future research.

Among the key limitations, by design, ecological regression 
analyses are unable to adjust for individual-level risk factors 
(e.g., age, race, and smoking status); when individual-level data are 
unavailable, this approach leaves us unable to make conclusions re-
garding individual-level associations. In the context of COVID-19 
health outcomes, this is a severe limitation, as individual-level risk 
factors are known to affect COVID-19 health outcomes. It is im-
portant to note that confusion between ecological associations and 
individual associations may present an ecological fallacy. In extreme 

Fig. 1. National maps of historical PM2.5 concentrations and COVID-19 deaths. Maps show (A) county-level 17-year long-term average of PM2.5 concentrations (2000–2016) 
in the United States in g/m3 and (B) county-level number of COVID-19 deaths per 1 million population in the United States up to and including 18 June 2020.

https://github.com/wxwx1993/PM_COVID
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cases, this fallacy can lead to associations detected in ecological 
regression that do not exist or are in the opposite direction of true 
associations at the individual level. However, ecological regression 
analyses still allow us to make conclusions at the area level, which 
can be useful for policy-making (11). For the association between 
COVID-19 health outcomes and PM2.5 exposure, we argue that 
area-level conclusions are valuable, as they can inform important 
immediate policy actions that will benefit public health, such as 

(i) prioritization of precautionary measures [e.g., personal protec-
tive equipment (PPE) allocations and hospital beds] to areas with 
historical higher air pollution and (ii) further strengthening the scien-
tific argument for lowering the U.S. National Ambient Air Quality 
Standards for PM2.5 and other pollutants. To completely avoid 
potential ecological bias, a representative sample of individual-level 
data is necessary. While this may not be feasible in the near future, 
as some COVID-19 outcome data become available at the indi-
vidual level, existing approaches that augment county-level data 
with individual-level data (12) could be used to correct for eco-
logical bias.

Furthermore, air pollution exposure misclassification, due to 
between-area mobility and within-area variation, is another potential 
source of bias that could affect the ecological regression results de-
scribed in our example study. Methods to account for the propaga-
tion of exposure error into the ecological regression model (13) 
could be applied to help mitigate the impact of measurement error. 
Outcome misclassification is another limitation that can be partially 
overcome by accessing nationwide registry data with the validated 
cause of death (14). As in all observational studies, adjustment 
for measured and unmeasured confounding presents another key 
challenge in ecological regression analyses, which may be exacerbated 
when dealing with dynamic pandemic data, as in our study. Con-
ducting studies using both traditional regressions and methods for 
causal inference as in Wu et al. (2) is necessary to assess the robust-
ness of the findings.

Increasing the scientific rigor of research in this area requires 
access to representative, individual-level data on COVID-19 health 
outcomes, including information about patients’ residential address, 
demographics, and individual-level confounders. This is an enormous 
challenge that will require consideration of many privacy, legal, and 
ethical trade-offs (14). Future areas of research also include the 
application of statistical methods to quantify and correct for ecolog-
ical bias and measurement error, reproducible methods for causal 
inference, and sensitivity analysis of measured and unmeasured 
confounding bias as suggested above. These strengths and limita-
tions are illustrated further in the context of our own study (see the 
Supplementary Materials).

DISCUSSION
Ecological regression analyses are crucial to stimulate innovations 
in a rapidly evolving area of research. Ongoing research has already 
focused on overcoming some aspects of these limitations (8, 15). 
For example, ecological regression analysis of air pollution and 
COVID-19, using data with finer geographic resolution, is being 
conducted for different countries and regions around the world. 
Cole et al. (8) published an ecological regression analysis using data 
in Dutch municipalities and found results consistent with our own 
investigation; the California Air Resources Board (CARB) is planning 
to conduct a similar study at the census tract level (15). Although an 
ecological regression analysis cannot provide insight into the mech-
anisms underlying the relationship between PM2.5 exposure and 
COVID-19 mortality, studies are starting to shed light on the potential 
biological mechanisms that may explain the relationship between 
air pollution and viral infection outcomes (16). For example, it has 
been hypothesized that chronic exposure to PM2.5 causes alveolar 
angiotensin-converting enzyme 2 (ACE-2) receptor overexpression 
and impairs host defenses (17). This could cause a more severe form 

Table 1. Mortality rate ratios (MRR), 95% confidence intervals (CI), 
and P values for all variables in the main analysis. Details of the 
statistical models are available in section S2. Q, quintile.  

MRR 95% CI P value

PM2.5 1.11 (1.06–1.17) 0.00

Population density 
(Q2) 0.91 (0.71–1.15) 0.42

Population density 
(Q3) 0.91 (0.71–1.16) 0.45

Population density 
(Q4) 0.74 (0.57–0.95) 0.02

Population density 
(Q5) 0.92 (0.69–1.23) 0.56

% In poverty 1.04 (0.96–1.12) 0.31

Log(median house 
value) 1.13 (0.99–1.29) 0.07

Log(median 
household income) 1.19 (1.04–1.35) 0.01

% Owner-occupied 
housing 1.12 (1.04–1.20) 0.00

% Less than high 
school education 1.20 (1.10–1.32) 0.00

% Black 1.49 (1.38–1.61) 0.00

% Hispanic 1.06 (0.97–1.16) 0.23

% ≥ 65 years of age 1.04 (0.93–1.17) 0.46

% 45–64 years of 
age 0.77 (0.67–0.90) 0.00

% 15–44 years  
of age 0.76 (0.68–0.85) 0.00

Days since 
stay-at-home order 1.18 (0.92–1.52) 0.20

Days since first case 2.40 (2.05–2.80) 0.00

Rate of hospital 
beds 1.00 (0.93–1.08) 0.95

% Obese 0.96 (0.90–1.03) 0.32

% Smokers 1.13 (1.00–1.28) 0.05

Average summer 
temperature (°F) 1.11 (0.95–1.30) 0.20

Average winter 
temperature (°F) 0.86 (0.69–1.07) 0.19

Average  
summer relative 
humidity (%)

0.93 (0.80–1.09) 0.38

Average  
winter relative 
humidity (%)

0.97 (0.87–1.07) 0.52
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Table 2. Strengths and limitations of ecological regression analyses applied to research on air pollution and COVID-19 and opportunities for  
future research.  

Strengths Limitations Future research

Study design: ecological regression Feasible, timely, and cost-effective Cannot be used to make inference 
about individual-level 
associations, doing so leads to 
ecological fallacy

Augment county-level data with 
individual-level data to adjust for 
ecological bias (12)

Data are representative of the entire 
U.S. population

Cannot adjust for individual-level risk 
factors such as age, gender, and 
race (19–21)

Conduct studies of individual-level 
health records using traditional 
regression and causal inference 
methods as in Wu et al. (2)Allows inference at the area level, 

which can be useful for 
policy-making (11)

Results are sensitive to the 
assumptions of the statistical 
model (11)

Computationally efficient and can be 
conducted daily to allow for the 
dynamic nature of the data and 
observe temporal trends; see fig. S3

Facilitates comparison of results 
across countries

Outcome: COVID-19 deaths 
aggregated at the county level

Publicly available data updated 
almost daily

Potential for outcome misclassification 
(22), particularly differential 
misclassification over time and 
space, which could bias results

Access to nationwide registry data with 
the validated cause of death (14)

Analyses using county excess deaths 
as the outcome (23)

Exposure: 2000–2016 average 
exposure to PM2.5 at the county 
level

Use of well-validated atmospheric 
chemistry models and machine 
learning models (9, 24)

Aggregation assumes that everyone 
in a county experiences the same 
exposures, leading to exposure 
misclassification, especially for the 
largest counties

Individual-level data on COVID-19 
deaths with geocoded addresses 
to link to air pollution data at the 
place of residence

PM2.5 exposure estimated at fine 
grids, which can be aggregated to 
the county level to assess exposure 
even in unmonitored areas (24)

Can be used to assess historical 
exposures to air pollution but not 
real-time exposures

Additional statistical methods to 
account for the propagation of 
exposure error into the ecological 
regression model (13)

As opposed to using monitor data, 
aggregation of modeled estimates 
ensures that county PM2.5 
exposure estimates represent the 
distribution across the entire area

Measured confounders More than 20 area-level variables 
capture age distribution, race 
distribution, socioeconomic 
status, population density, 
behavioral risk factors, epidemic 
stage, and stay-at-home orders 
(see tables S1 and S2)

County average features may not 
represent the features of 
COVID-19 patients, leading to 
inadequate adjustment

Causal inference approaches to 
adjust for measured confounding 
bias, producing results that are 
less sensitive to statistical 
modeling assumptions

These overlap with the confounder 
sets used in much of the previous 
literature on air pollution and 
health (25, 26)

Difficult to formalize the notion of 
“epidemic stage,” which may be 
an important confounder

The threat of unmeasured 
confounding bias still present

Causal inference approaches to 
assess covariate balance (2)

Sensitive to the form of the statistical 
model specified (i.e., assumptions of 
linearity and no effect modification)

Individual-level data on key 
measured confounders such as 
smoking and body mass index

Unmeasured confounders Leverage existing approaches, such 
as the calculation of the E-value 
(27), to assess how strong the 
effect of an unmeasured 
confounder would need to be to 
explain away the associations 
detected (see section S3)

The most important threat to the 
validity of any observational study

Natural experiment designs and 
instrumental variables can be 
used to reduce the threat of 
unmeasured confounding but are 
less common

Even measures like the E-value 
cannot inform us about the 
likelihood that a strong 
unmeasured confounder exists; 
this must be evaluated on the 
basis of subject matter knowledge



Wu et al., Sci. Adv. 2020; 6 : eabd4049     4 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 6

of COVID-19 in ACE-2–depleted lungs, increasing the likelihood 
of poor outcomes, including death (18).

The associations detected in ecological regression analyses provide 
strong justification for follow-up investigations as more and higher-
quality COVID-19 data become available. Such studies would include 
validation of our findings with other data sources and study types, 
as well as investigations into mediating factors and effect modifiers, 
biological mechanisms, impacts of PM2.5 exposure timing, and re-
lationships between PM2.5 and other COVID-19 outcomes such as 
hospitalization. Research on how modifiable factors may exacerbate 
COVID-19 symptoms and increase mortality risk is essential to guide 
policies and behaviors to minimize fatality related to the pandemic. 
Such research could also provide a strong scientific argument for 
revision of the U.S. Ambient Air Quality Standards for PM2.5 and 
other environmental policies in the midst of a pandemic.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/45/eabd4049/DC1
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Long-term effects of PM2·5 on neurological disorders in the 
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Summary
Background Accumulating evidence links fine particulate matter (PM2·5) to premature mortality, cardiovascular 
disease, and respiratory disease. However, less is known about the influence of PM2·5 on neurological disorders. We 
aimed to investigate the effect of long-term PM2·5 exposure on development of Parkinson’s disease or Alzheimer’s 
disease and related dementias.

Methods We did a longitudinal cohort study in which we constructed a population-based nationwide open cohort 
including all fee-for-service Medicare beneficiaries (aged ≥65 years) in the contiguous United States (2000–16) with no 
exclusions. We assigned PM2·5 postal code (ie, ZIP code) concentrations based on mean annual predictions from a 
high-resolution model. To accommodate our very large dataset, we applied Cox-equivalent Poisson models with 
parallel computing to estimate hazard ratios (HRs) for first hospital admission for Parkinson’s disease or Alzheimer’s 
disease and related dementias, adjusting for potential confounders in the health models.

Findings Between Jan 1, 2000, and Dec 31, 2016, of 63 038 019 individuals who were aged 65 years or older during the 
study period, we identified 1·0 million cases of Parkinson’s disease and 3·4 million cases of Alzheimer’s disease and 
related dementias based on primary and secondary diagnosis billing codes. For each 5 μg/m³ increase in annual 
PM2·5 concentrations, the HR was 1·13 (95% CI 1·12–1·14) for first hospital admission for Parkinson’s disease and 
1·13 (1·12–1·14) for first hospital admission for Alzheimer’s disease and related dementias. For both outcomes, there 
was strong evidence of linearity at PM2·5 concentrations less than 16 μg/m³ (95th percentile of the PM2·5 distribution), 
followed by a plateaued association with increasingly larger confidence bands.

Interpretation We provide evidence that exposure to annual mean PM2·5 in the USA is significantly associated with an 
increased hazard of first hospital admission with Parkinson’s disease and Alzheimer’s disease and related dementias. 
For the ageing American population, improving air quality to reduce PM2·5 concentrations to less than current 
national standards could yield substantial health benefits by reducing the burden of neurological disorders.

Funding The Health Effects Institute, The National Institute of Environmental Health Sciences, The National Institute 
on Aging, and the HERCULES Center.

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 
license.

Introduction
Globally, neurological disorders are the leading group-
cause of disability and the second leading group-cause of 
death, posing an urgent and substantial worldwide public 
health challenge.1 Parkinson’s disease and Alzheimer’s 
disease and related dementias are the most prevalent 
neurodegenerative diseases.2 Worldwide, an estimated 
6 million people have Parkinson’s disease and 44 million 
people have Alzheimer’s disease and related dementias.1 
The Global Burden of Diseases, Injuries, and Risk Factors 
Study 2016 analysis estimated that, since 1990, the 
prevalence of Parkinson’s disease has increased by 145% 
and Alzheimer’s disease and related dementias have 
increased by 117%. The prevalence of these conditions is 
expected to continue to increase due to lengthening life 
expectancy.1 As no cure exists yet for these conditions, the 
identification of modifiable risk factors, such as environ
mental exposures, should be a top research priority.

Concern is mounting that air pollution increases the risk 
for neurological disorders. Emerging evidence has shown 
that particulate air pollution is associated with impaired 
cognitive function,3,4 accelerated cognitive decline,5,6 
Parkinson’s disease, Alzheimer’s disease, and dementia.7–9 
Research suggests that air pollution might contribute to 
the potential onset of neurodegeneration via mecha
nisms such as oxidative stress, systemic inflammation, 
and neuroinflammation, among others.10–12 There is also 
evidence that air pollution might exacerbate disease 
progression by accelerating these biological pathways or 
worsening intermediate processes.13,14 Therefore, the first 
hospital admission with a relevant diagnosis code is 
occurring sooner than expected. Previous studies that 
used hospital admission data to assess the effect of air 
pollution exposure on progression of Parkinson’s disease 
and Alzheimer’s disease and related dementias included 
populations residing in the southeastern US region,7,15 the 
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Ontario province of Canada,8 and well monitored urban 
areas in the northeastern USA.9 To the best of our 
knowledge, no study to date has been done in the whole 
US population. Previous studies also focused on older 
data; as air pollution concentrations have been steadily 
decreasing in the past few decades in the USA although 
increases have been seen in some regions, it is essential to 
establish whether these associations persist even at low 
concentrations. Hence, evidence remains scarce for the 
health effects of long-term exposure to low amounts of air 
pollution across the USA, including locations with sparse 
or no monitoring.

We aimed to investigate the effect of long-term exposure 
to fine particulate matter (PM2·5) on hospital admissions 
with a Parkinson’s disease or an Alzheimer’s disease and 
related dementias diagnosis code. We leveraged a nation
wide comprehensive dataset integrating highly accurate 
and well validated high-resolution PM2·5 prediction 
models and health data for all fee-for-service Medicare 
beneficiaries across the contiguous United States 
(2000–16). To address the computational challenges, we 

applied a novel computationally scalable re-parameterised 
Cox-equivalent Poisson model.

Methods
Study design and participants
We did a longitudinal cohort study in which we 
constructed a cohort including all Medicare-fee-for-
service beneficiaries who were aged 65 years or older in 
the USA from Jan 1, 2000, to Dec 31, 2016, using the 
Medicare part A data. We obtained the Medicare inpatient 
hospital claims from the Medicare Provider and Analysis 
Review files, which include one record per hospital 
admission. People are eligible to enter Medicare after 
they turn 65 years of age, and for each beneficiary, follow-
up started on Jan 1, 2000, or Jan 1 of the year following 
entry into the cohort, until first admission with diagnosis 
codes for each outcome separately (ie, Parkinson’s 
disease or Alzheimer’s disease and related dementias), 
death, or the end of the study period, whichever came 
first. We extracted age, sex, race, postal code (ie, ZIP 
code) of residence, and Medicaid eligibility for each 

Research in context

Evidence before this study
Air pollution is a known risk factor for poorer human health. 
Concern is mounting that air pollution increases the risk for 
neurological disorders, the leading group-cause of disability and 
the second leading group-cause of death according to the Global 
Burden of Diseases, Injuries, and Risk Factors Study 2016. 
We searched PubMed and Google Scholar for studies examining 
associations of air pollution exposure with neurological 
disorders published from database inception until Aug 25, 2020. 
We used the keywords: (“PM2.5” OR “fine particulate matter” OR 
“fine particles” OR “air pollution” OR “air pollutants”) AND 
(“neurological” OR “neurodegeneration” OR 
“neurodegenerative” OR “cognitive” OR “Parkinson’s disease” 
OR “Alzheimer’s disease” OR “dementia”). Although 
toxicological evidence links long-term PM2·5 exposure with 
adverse effects on the nervous system, the epidemiological 
evidence remains scarce. Emerging evidence has shown that 
particulate matter air pollution is associated with impaired 
cognitive function, accelerated cognitive decline, Parkinson’s 
disease, Alzheimer’s disease, and dementia. The studies using 
hospital admission data to look at the effect of particulate 
matter air pollution on these conditions generally included 
populations residing in well monitored urban areas, or in a 
single region of the USA, or in a province of Canada. To date, 
no study has been done nationwide in the USA. Previous studies 
also focused on older data; air pollution concentrations in the 
USA have been steadily decreasing, so it is essential to establish 
whether these associations persist even at lower concentrations.

Added value of this study
To our knowledge, this is the first nationwide cohort study of 
the association between PM2·5 exposures and neurodegenerative 

disease in the USA. Our findings provide strong epidemiological 
evidence for the association between air pollution and 
neurological disorders. We showed that long-term PM2·5 exposures 
were significantly associated with an increased risk of first 
hospital admission with primary or secondary diagnosis codes 
for Parkinson’s disease and Alzheimer’s disease and related 
dementias. In addition, we observed that risk of first hospital 
admission with a diagnosis code for these conditions, as a proxy 
for neurodegeneration, linearly increased with increasing 
PM2·5 concentrations less than the current national standards 
(annual mean 12 μg/m³), suggesting that no safe threshold 
exists for health-harming pollution concentrations. One 
highlight of this paper is that we are leveraging an unparalleled 
amount of data compared with any previous air pollution study 
to our knowledge, to provide robust epidemiological evidence 
with the highest possible scientific rigour. Another key feature 
is the use of innovative computational approaches to 
accommodate our very large datasets, which can be applicable 
to other epidemiological studies that face similar challenges in 
the era of big data.

Implications of all the available evidence
Our study adds to the small but emerging evidence base 
indicating that long-term air pollution exposures are linked to 
an increased risk of neurological health deterioration, even at 
PM2·5 concentrations less than the current national standards. 
Our findings suggest that policies that result in further 
reductions in ambient PM2·5 concentrations can yield 
substantial health benefits in the ageing American population, 
even for those already exposed to low PM2·5 concentrations.
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beneficiary in each follow-up year. Medicaid (which is 
distinct from Medicare) is a joint federal–state insurance 
programme that provides health and nursing home 
coverage to Americans of all ages on low incomes or with 
disabilities. Medicaid eligibility is a proxy for individual-
level socioeconomic status—ie, a Medicare beneficiary 
eligible for Medicaid is likely to have lower socioeco
nomic status. This study was done under a protocol 
approved by the Human Subjects Committee of the 
Harvard T H Chan School of Public Health. Written 
informed consent of individuals was not required due to 
the nature of the study.

Procedures
We used International Classification of Diseases (ICD) 
codes to identify Parkinson’s disease (ICD-9: 332; ICD-10: 
G20, G21·11, G21·19, and G21·8) or Alzheimer’s disease 
and related dementias (ICD-9: 331·0, 290; ICD-10: G30·9, 
and F05) admissions as principal or secondary diagnoses 
during the study period (appendix p 3). We observed some 
overlap in diagnoses for Alzheimer’s disease and demen
tia. We found that 298 461 (24·2%) of 1 233 132 Medicare-
fee-for-service beneficiaries with a dementia diagnosis 
also received an Alzheimer’s disease diagnosis, while 
of 2 490 431 Medicare-fee-for-service beneficiaries with 
Alzheimer’s disease diagnoses, 298 461 (12·0%) also 
received a dementia diagnosis. This overlap in diagnoses 
probably reflects different classifications in different 
medical centres, but not diagnostic misclassification, 
as routinely collected health data have been shown to 
achieve high positive predictive values.15 Therefore, fol
lowing the literature,8 we combined Alzheimer’s disease 
and dementia into one outcome for the main analysis 
and treated them separately as a sensitivity analysis. 
Thus, separate analyses were done for the two outcomes: 
Parkinson’s disease and Alzheimer’s disease and related 
dementias.

We obtained daily PM2·5 predictions at a 1 km² spatial 
resolution across the contiguous United States from a 
well validated ensemble model.16 The model included 
more than 100 predictor variables from satellite data, 
land-use and meteorological variables, and chemical 
transport model simulations. The model was calibrated 
with daily PM2·5 concentrations measured at 2156 moni
tors—data obtained from the US Environmental 
Protection Agency’s Air Quality System database and 
IMPROVE monitoring network—and had excellent 
performance (10-fold cross-validated r² of 0·86 for PM2·5 
predictions across the USA, ranging from 0·77 in the 
mountainous USA to 0·92 in the eastern Midwestern 
USA). The technical details, including information on 
the model validation, have been previously published.16 
Using daily PM2·5 predictions at 1 km² grid cells, we 
calculated the daily mean PM2·5 concentration for each 
postal code, by averaging the predictions at the grid cells 
whose centroids fell within the boundary of that postal 
code. Based on these results, we estimated annual postal 

code means and assigned the postal code-wide annual 
PM2·5 concentration means to Medicare enrollees 
according to the postal code of residence and calendar 
year. In the USA, the mean population per postal code is 
around 7500. Each postal code can cover a small area in 
cities but can be larger in rural areas. The median land 
area of a postal code is around 92 km².

Statistical analysis
We collected neighbourhood-level socioeconomic status 
variables, available at county level or postal code tabulation 
areas level, which have both been associated with ambient 
air pollution and implicated in neurological health.17,18 
These variables were derived from the 2000–16 Behavioral 
Risk Factor Surveillance System, the 2000 and 2010 US 
Census, and the American Community Survey for each 
year from 2005 to 2016 (appendix pp 3–4). Region was 
classified as northeast, southeast, midwest, southwest, 
and west.

Given the very large dataset, we applied a Cox-equivalent 
re-parameterised Poisson approach for each of the 
two outcomes, coupled with parallel computing, to 
address the computational challenges (eg, inadequate 
memory size and lengthy computational time) faced 
by the conventional Cox proportional hazards model. 
Specifically, we proposed and fit a stratified quasi-Poisson 
model to estimate associations between the rate of 
first hospital admissions with neurological-related diag
nosis codes (Parkinson’s disease or Alzheimer’s disease 
and related dementias) and time-varying annual mean 
PM2·5 concentrations. The dependent variable was the 
count of outcome-related hospital admissions in each 
follow-up year, calendar year, and postal code location 
within strata specified by individual characteristics, using 
the corresponding total person-time of Medicare-fee-for-
service beneficiaries as the offset. By stratifying on indi
vidual characteristics—ie, sex, race, Medicaid eligibility, 
and age at study entry in 2-year categories—we allowed 
for flexible strata-specific baseline rates. Mathematically, 
this stratified Poisson model is equivalent to a time-
varying Cox proportional hazard model under an 
Anderson-Gill representation (appendix pp 4–5).19 Impor
tantly, the Cox-equivalent Poisson models also allowed 
use of parallel computing techniques that are not 
available for Cox models, further reducing the compu
tation time. To account for within postal code correlated 
observations across years, we applied an m-out-n 
bootstrap method using postal code units to calculate 
statistically robust CIs.20

To adjust for potential confounding, we also included 
neighbourhood-level socioeconomic status factors in our 
analyses. To account for potential residual confounding 
by spatial and temporal trends, we included indicator 
variables for region and calendar years. We also estimated 
effects at low concentrations of PM2·5, by restricting 
analyses to the subset of the cohort with annual expo
sures always lower than the current national standards 

See Online for appendix

For the Environmental 
Protection Agency’s air quality 
data see https://www.epa.gov/
outdoor-air-quality-data
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(ie, 12 μg/m³) over the study period (low-exposure ana
lysis). Finally, to evaluate any potential deviations from 
linearity in the concentration–response curves, we included 
penalised splines for the PM2·5 term in the models.

To identify subpopulations who might be particularly 
susceptible, we assessed potential effect modification by 
sex (men vs women), race (white people vs Black people 
vs other [Asian, Hispanic, American Indian or Alaskan 
Native, and unknown]), age (≥80 years vs <80 years), 
Medicaid eligibility (dual vs non-dual eligibility) as a 
surrogate for individual-level socioeconomic status, and 
urbanicity (quartiles of population density), by including 
interaction terms between these potential modifiers and 
PM2·5. Specifically, we calculated the effect of PM2·5 in 
each category of the effect modifier and assessed 
significance of the interaction term. We chose the age of 
80 years as a cutoff to distinguish the young and middle-
old from the old-old.21

 We did a series of sensitivity analyses to assess the 
robustness of our results to confounding, inclusion of 
prevalent cases, potential outcome misclassification, and 
exposure time window (appendix pp 5–8). Given that 
these neurodegenerative diseases are age-dependent, 
as additional sensitivity analysis we also considered 
stratification by age at entry using 1-year intervals. To 
remove potentially prevalent cases, we ran additional 
analyses excluding anyone who had a first admission for 
these outcomes in their first 2 years of follow-up and 
repeated our analyses. As information in Medicare is 
only available after beneficiaries turn 65 years old, it is 
possible that some study participants had a Parkinson’s 
disease or Alzheimer’s disease and related dementias 
hospital admission before enrolling to Medicare. This 
sensitivity analysis—excluding cases with an admission 
during their first 2 years of enrolment—increases the 
probability that we are capturing the first admission with 
a related code. To evaluate whether the associations we 
observed can be attributed to a different outcome also 
linked to air pollution, we excluded the subset of 
Parkinson’s disease and Alzheimer’s disease and related 
dementias cases with the most frequent category of 
primary discharge codes (ie, circulatory system disease 
[ICD-9: 390–459; ICD-10: I00–I99]) from analyses. The 
primary discharge code appeared in 392 588 (41·1%) 
cases of Parkinson’s disease and 1 323 044 (45·3%) cases 
of Alzheimer’s disease and related dementias. Addi
tionally, we added a sensitivity analysis restricting cases 
only to those with primary diagnoses codes for 
Parkinson’s disease or Alzheimer’s disease and related 
dementias. Finally, we considered an alternative expo
sure window with 1-year lag period (ie, using the annual 
mean exposure during the year preceding the outcome). 
Considering that chemical composition of PM2·5 mass 
(and thus relative toxicity) can vary markedly among 
different regions in the USA, we also did a subgroup 
analysis by region.

The computations of the analyses of this study were 
done on the Research Computing Environment, which is 
supported by the Institute for Quantitative Social Science 
at Harvard University. We used R software, version 3.3.2 
for all analyses.

Full cohort (n=63 038 019) Low-exposure cohort (n=21 928 573)

Age at entry, years

65–74 48 784 857 (77·4%) 17 010 757 (77·6%)

75–84 10 550 039 (16·7%) 3 673 343 (16·8%) 

85–94 3 327 268 (5·3%) 1 134 507 (5·2%)

95–104 375 708 (0·6%) 109 934 (0·5%)

105–114 147 (<0·1%) 32 (<0·1%) 

Mean (SD) 69·9 (7·2) 69·8 (7·1)

Sex

Men 28 295 987 (44·9%) 10 084 588 (46·0%)

Women 34 742 032 (55·1%) 11 843 985 (54·0%)

Race

White 53 229 370 (84·4%) 19 776 603 (90·2%)

Black 5 513 530 (8·7%) 663 313 (3·0%)

Other* 4 295 119 (6·8%) 1 488 657 (6·8%)

Medicaid eligibility

Eligible 7 853 739 (12·5%) 2 405 354 (11·0%)

Ineligible 55 184 280 (87·5%) 19 523 219 (89·0%)

PM2·5 concentration, μg/m³ 9·7 (3·2) 7·2 (2·3)

Body-mass index, kg/m² 27·5 (1·1) 27·3 (1·0)

Ever smoked, % 47·1 (7·7) 48·1 (7·8)

Hispanic, % 9·2 (16·7) 9·2 (16·3)

Black, % 9·1 (17·3) 2·7 (7·5)

Median household income, 
US$1000

48·0 (21·7) 47·5 (18·9)

Median home value, $1000 159·0 (141·9) 153·9 (131·8)

Below poverty level, % 11·0 (10·9) 9·7 (10·2)

Not graduated from high school, % 28·7 (18·8) 24·2 (17·1)

Owner-occupied housing, % 71·1 (18·8) 75·2 (14·8)

Population density, people per mile² 1601·2 (5233·1) 595·1 (1595·8)

Data are n (%) or mean (SD). *Other included Asian, Hispanic, American Indian or Alaskan Native, and unknown.  

Table 1: Cohort characteristics

Parkinson’s disease Alzheimer’s disease and related 
dementias

Main analyses

Number of admissions 1 033 669 3 425 102

Total person-years 478 335 593 473 696 618

Median follow-up year 7 7

HR per 5 µg/m³ PM2·5 1·13 (1·12–1·14) 1·13 (1·12–1·14)

Low-exposure analyses (<12 μg/m³)

Number of admissions 301 227 939 035

Total person-years 156 287 478 155 139 930

Median follow-up year 6 6

HR per 5 µg/m³ PM2·5 1·14 (1·12–1·16) 1·18 (1·15–1·21)

Data are n or HR (95% CI). HR=hazard ratio.  

Table 2: Cause-specific admissions for Parkinson’s disease and Alzheimer’s disease and related dementias, 
2000–16
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Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.

Results
Data were analysed for Medicare beneficiaries who were 
65 years and older between Jan 1, 2000, and Dec 31, 2016. 
The full cohort included 63 038 019 individuals living in 
39 065 postal codes (table 1). The mean age at entry was 
69·9 years (SD 7·2). There were 478·3 million person-
years of follow-up for Parkinson’s disease and 473·7 million 
for Alzheimer’s disease and related dementias (table 2). 
The total number of first admissions was 1·0 million 
for Parkinson’s disease and 3·4 million for Alzheimer’s 
disease and related dementias. The median follow-up 
was 7 years (IQR 8). Of the Parkinson’s disease cases, 
77 016 (7·5%) of 1 033 669 had Parkinson’s disease as the 
primary discharge diagnosis code and, of the Alzheimer’s 
disease and related dementias cases, 502 565 (14·7%) of 
3 425 102 did. For the cases identified with secondary 
diagnoses of these conditions, we examined the dis
tribution of primary diagnostic codes and found that the 
primary conditions were predominantly circulatory 
system diseases (appendix p 8).

The low-exposure cohort subset included 21 928 573 
individuals living in 15 775 postal codes, with a mean 
entry age of 69·8 years (SD 7·1). For Parkinson’s disease, 
the total person-years of follow-up was 156·3 million 
and for Alzheimer’s disease and related dementias, it 
was 155·1 million. The number of first admissions was 
0·3 million for Parkinson’s disease and 0·9 million for 
Alzheimer’s disease and related dementias (table 2).

The mean annual PM2·5 concentration over the 
study period was 9·7 μg/m³ (SD 3·2, IQR 4·3, 5th to 
95th percentile 5·2–15·9; figure 1A). PM2·5 concentra
tions were generally higher in eastern USA than in 
western USA (except California). Figures 1B and 1C 
present the occurrence of first hospital admissions with 
a Parkinson’s disease or an Alzheimer’s disease and 
related dementias diagnosis code, per 100 000 Medicare 
beneficiaries across the contiguous United States (2000–16).

Overall, long-term exposure to PM2·5 was significantly 
positively associated with both neurodegenerative out
comes in both the entire cohort and the low-exposure 
subset. Specifically, in the entire cohort we observed 
a hazard ratio (HR) of 1·13 (95% CI 1·12–1·14) for 
Parkinson’s disease admissions and an HR of 1·13 
(1·12–1·14) for Alzheimer’s disease and related dementias 
admissions per 5 μg/m³ increase in annual PM2·5 con
centrations. In the low-exposure subset, we found a slightly 
elevated association (HR 1·14, 95% CI 1·12–1·16) for 
Parkinson’s disease and an elevated association (HR 1·18, 
1·15–1·21) for Alzheimer’s disease and related dementias 
admissions per 5 μg/m³ PM2·5 increase (table 2).

Figure 1: Nationwide concentrations of PM2·5, and occurrences of Parkinson’s disease and Alzheimer’s disease 
and related dementias across the contiguous United States
(A) 17-year mean of annual PM2·5 concentrations (μg/m³). (B) Occurrence of first Parkinson’s disease hospital 
admissions per 100 000 Medicare beneficiaries. (C) Occurrence of first Alzheimer’s disease and related dementias 
hospital admissions per 100 000 Medicare beneficiaries (2000–16). 
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Figure 2 shows the concentration–response relation
ships for Parkinson’s disease and Alzheimer’s disease 
and related dementias. We observed a strong linear 
relationship for annual mean PM2·5 concentrations less 
than 16 μg/m³, followed by a plateaued association with 
increasingly larger confidence bands for both outcomes. 
However, less than 5% of the distribution of the PM2·5 
concentrations were greater than 16 μg/m³.

Among the effect modifiers, we found PM2·5 effect 
estimates that were significantly larger in magnitude 
among individuals in more urban areas versus those in 
less urban areas (as expressed in quartiles of population 
density). We also observed higher HRs among those who 
identified as white than those who identified as Black 
or Asian, Hispanic, American Indian or Alaskan Native, 
and unknown, and for women compared with men 
(figure 3).

For both Parkinson’s disease and Alzheimer’s disease 
and related dementias, all sensitivity analyses yielded 
similar results to the main analyses (appendix pp 5–8). 
When excluding potentially prevalent cases (ie, excluding 
those who had a first admission in the first 2 years of 
follow-up), both effect estimates were slightly elevated. 
The sensitivity analysis in which Alzheimer’s disease and 
dementia were treated as separate outcomes also yielded 
significant and positive associations between PM2·5 and 
the two separate outcomes of interest. However, the 
effect estimates for Alzheimer’s disease (HR 1·17, 
95% CI 1·16–1·18) were higher than those for dementia 
(HR 1·06, 1·05–1·07). Our results were robust to 
confounding adjustment—ie, the results were almost 
unchanged when we excluded different sets of covariates 
in alternative models compared with the main one. 
Additionally, both exclusion of all cases identified 
through secondary diagnostic codes and exclusion of 

those secondary diagnostic cases with circulatory system 
disease as the primary diagnosis code did not change 
the main results. Finally, our results were robust to the 
use of a different exposure window. The 1-year lagged 
exposure analysis (eg, using annual mean PM2·5 in 2005 
to link the outcome in 2006) yielded results nearly 
identical to the findings from our main analysis.

All region-specific results consistently suggested a 
link between PM2·5 and first Parkinson’s disease and 
Alzheimer’s disease and related dementias hospital 
admissions, although effect estimates varied by geo
graphical region. In summary, we observed the highest 
HR for first Parkinson’s disease hospital admission 
among Medicare enrollees in the northeastern USA and 
for first Alzheimer’s disease and related dementias 
hospital admissions in the midwestern USA.

Discussion
In this large, nationwide prospective cohort of all 
Medicare-fee-for-service beneficiaries, long-term exposure 
to PM2·5, an indicator for the air pollution mixture at each 
postal code, was associated with an increased risk of first 
hospital admission with a Parkinson’s disease or an 
Alzheimer’s disease and related dementias diagnosis 
code, even at concentrations less than the current annual 
national standards (12 μg/m³). We also identified women, 
white people, and more urbanised populations as par
ticularly susceptible subgroups. These findings suggest 
that improving air quality, with PM2·5 concentrations even 
lower than current national standards, could yield public 
health benefits.

The shape of the concentration–response relationship 
between air pollution and neurodegeneration has rarely 
been assessed in the literature. Only one previous study 
simply assessed non-linearity using quartiles and found 
no evidence of deviation.9 This result was in agreement 
with our results, had we used quartiles. Use of splines 
allowed for a more detailed characterisation of the shape 
across the PM2·5 concentration range. Risk of first hospital 
admission with a Parkinson’s disease or an Alzheimer’s 
disease and related dementias diagnosis code, as a proxy 
for neurodegeneration progression, linearly increased 
with increasing PM2·5 concentrations less than the current 
annual standards (12 μg/m³), suggesting no safe thres
hold for harmful pollution. Although we detected some 
deviations from linearity at concentrations greater than 
16 μg/m³, less than 5% of the observations were higher 
than that. It is possible that any deviation at such high 
concentrations could indicate that the flexible penalised 
splines are sensitive to potential outlying observations with 
high leverage.

Our findings regarding associations between PM2·5 and 
Alzheimer’s disease and related dementias are consistent 
with previous research, both in terms of direction and 
magnitude; of these, one was done in Ontario’s Canadian 
population,8 and the other two were done in regional 
subpopulations of US Medicare enrollees.7,9 Mixed results, 

Figure 2: Concentration–response curves of the association between long-term PM2·5 exposure and 
neurological disorders
Parkinson’s disease (A) and Alzheimer’s disease and related dementias (B). 
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including both positive and null findings, however, were 
reported for the association between PM2·5 and Parkinson’s 
disease in the literature.9,22,23 It is worth noting that a 
comprehensive city-level study in 50 northeastern US 
cities among Medicare enrollees found higher estimates 
in magnitude for Parkinson’s disease and Alzheimer’s 
disease and related dementias than the ones estimated in 
this study,9 which matches our finding of significantly 
higher PM2·5 effects among urban dwellers. Other studies 
also found similar results in the urban populations they 
investigated.7,8 The observed associations for the other 
grouping within race are not clear and more work is 
needed to understand these results. We note, however, 
that the percentage of the population aged older than 
65 years in the USA who are not white or Black is 6·8%.

Both examined diseases have long insidious onsets and 
the exact timing of disease onset is not known.24,25 
Furthermore, disease diagnosis probably occurs at a 
neurologist’s office and not during a hospital admission. 
Therefore, use of an administrative dataset does not allow 
investigation of the association between PM2·5 and onset 
of these outcomes. That is, with our analysis we cannot 
examine true onset incidence or incidence of diagnosis. 
Our analysis estimates incidence of first hospital admis
sion, which can be interpreted as increased susceptibility 
to hospital admissions among this patient population 
and accelerated disease progression. In support of our 
hypothesis and main findings, the sensitivity analysis 
excluding people that had a first admission in the first 
2 years of the cohort (ie, potentially prevalent cases) 
resulted in larger in magnitude effect estimates.

In our main analysis, 956 653 (92·5%) of the 
Parkinson’s disease cases and 2 922 537 (85·3%) of the 
Alzheimer’s disease and related dementias cases that we 
identified were based on secondary causes and had a 
different primary cause of admission. Although this 
observation was expected, as these outcomes are 
monitored by neurologists and do not necessarily show 
up as primary hospital admissions, we were concerned 
that the observed effect could reflect the signal with 
the most common primary diagnosis code for these 
outcomes. Exclusion, however, of Parkinson’s disease 
and Alzheimer’s disease and related dementias cases 
with a primary diagnosis for circulatory system disease 
did not change our results.

Toxicological studies suggest various potential mech
anisms via which air pollution might contribute to 
neurodegenerative progression. Systemic and brain 
inflammation, for example, enhance the pathogenic 
alteration of α-synuclein, accelerating the progression of 
Parkinson’s disease14 and Alzheimer’s disease.13 Oxidative 
stress, in addition, is also involved both in initiation and 
progression, and plays an important role in accelerating 
Parkinson’s disease progression.26 Air pollution might 
play a key role in neuroinflammation and further exacer
bate or initiate dysfunctional protein handling, in the 
context of amyloid plaques, tau hyperphosphorylation, 

and neurofibrillary tangles.27 Several air pollutants, 
including PM2·5 and ultrafine (<0·1  μm) particulate 
matter, have been shown to easily cross the blood–brain 
barrier, providing an important route for air pollutants to 
interact with the CNS. Indeed, increases in air pollution 
can elicit increases in the inflammatory response in the 
prefrontal lobes, with concomitant increases in oxidative 
damage and amyloid β deposition. The origin of these 
pathological markers could arise from the direct 
interaction of air pollutants with microglia in the brain, 
resulting in a release of pro-inflammatory signals that 
further facilitate neuronal damage and protein aggre
gation. Elevation in pro-inflammatory signals can 
mediate dysfunctional protein handling, in the form of 
elevations in amyloid β and hyperphosphorylation of 
tau.27 Given the pathogenesis of Alzheimer’s disease and 
other neurogenerative diseases that are defined by neuro
inflammation, oxidative damage, and protein misfolding, 
exposure to air pollution might serve as an important 
risk factor in the development and progression of 

Figure 3: Identification of vulnerable subpopulations
Hazard ratios for Parkinson’s disease (A) and Alzheimer’s disease and related dementias (B) associated with a 5 μg/m³ 
increase in PM2·5 concentrations by study subgroups. The shading represents the estimated main effects for the 
overall population. Dual or non-dual refers to eligibility for Medicaid. Density Q1–Q4 denote quartiles of population 
density—ie, low population density, low to medium population density, medium to high population density, 
and high population density. Other included Asian, Hispanic, American Indian or Alaskan Native, and unknown 
race. *Significant modification (at α=0·05 level).
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Alzheimer’s disease and Parkinson’s disease pathology 
and concomitant neurobehavioural deficits. For all 
neurological outcomes, we observed significantly higher 
effects of PM2·5 among individuals in urban areas versus 
rural areas. One possible reason might be the abundance 
of metal-bearing nanoparticles in the urban atmosphere, 
which have very small diameters and can access the brain 
directly.28 The higher estimates among white people and 
women could be attributed to a longer life expectancy in 
these groups—ie, the chance of competing risks among 
non-white individuals or men is greater, including the 
probability of death before developing Parkinson’s 
disease or Alzheimer’s disease and related dementias.29

Our study data and methods have several advantages. 
First, our study population of all Medicare-fee-for-service 
beneficiaries in the USA gives us ample power to detect 
effects. This statistical power is particularly useful in 
environmental studies in which exposures are highly 
prevalent but effect estimate sizes are often small. 
Second, our study assessed the whole of the USA, which 
has greater generalisability than previous smaller cohort 
studies that were geographically restricted, although 
our study might not be generalisable to other countries. 
Furthermore, the aggregation of data into strata of shared 
individual characteristics not only allowed us to create a 
more efficient model but also allowed us to analyse a very 
large dataset with a far smaller computational burden. 
Given the increase in the use of very large datasets, this 
novel analytical approach might be useful in other 
research as well.

Our findings, however, should be interpreted in light 
of some potential limitations. First, reliance on an 
administrative cohort did not allow us to examine the 
relationship between PM2·5 and disease onset. Parkinson’s 
disease and Alzheimer’s disease and related dementias 
are diseases that do not require hospital admission for 
diagnosis and treatment; usually, hospital admission 
occurs at more advanced stages of the disease for treating 
complications or for adjusting the therapeutic plan. Thus, 
the hospital admission records cannot represent disease 
incidence and we probably underestimate the case 
number when using first hospital admission as a proxy 
for neurodegeneration. In addition, a positive predictive 
value of 0·65 for Parkinson’s disease30 and about 0·75 for 
Alzheimer’s disease and related dementias31 has been 
reported when Medicare claims were used, indicating the 
under-diagnosed nature of neurological conditions using 
claims records. Furthermore, our results only represent 
the Medicare-fee-for-service population, which does not 
include all Medicare beneficiaries. Specifically, earlier 
in our study period (eg, in 2003), the Medicare-fee-for-
service population covered up to 29 230 838 (84·9%) of 
34 423 305 Medicare beneficiaries, while in 2016 it was 
30 974 063 (65·8%) of 47 099 370 Medicare beneficiaries. 
It is possible that Medicare-fee-for-service beneficiaries 
switched to Medicare-HMO (Medicare managed care 
plan) and back, potentially resulting in some missed 

cases in our data, as we have no information on Medicare-
HMO claims records. Our findings, thus, might not be 
generalisable to the entire Medicare population. Second, 
the use of predicted concentrations for exposure assess
ment might have resulted in some exposure measure
ment error. However, the prediction model we used 
is considered to have excellent predictive accuracy,16 
substantially reducing potential exposure measurement 
error. In our study, exposure measurement error is likely 
to be non-differential because the error in the predicted 
ambient PM2·5 concentrations is probably independent 
of outcome status. Thus, any resulting bias would be 
towards the null.32 Third, we cannot exclude the possibility 
of potential residual confounding bias. We did, however, 
adjust all our models for multiple neighbourhood-level 
socioeconomic status variables, and thus any potential 
residual bias is expected to be very small. Individual-level 
risk factors for neurological disorders, such as smoking, 
are not available in Medicare. However, we used postal 
code mean predicted PM2·5 to assign exposures, which 
could only covary with individual-level factors through 
postal code-level socioeconomic status,33 for which we 
carefully adjusted, thus effectively minimising this 
potential source of bias. Fourth, our ensemble model 
predicts total PM2·5 mass concentrations, but not all 
particles have the same toxicity; some studies have shown 
that traffic-related pollution might be particularly toxic.34 
Future studies should aim to disentangle specific effects 
of regional versus local particles.

In conclusion, our study provides strong epide
miological evidence that long-term exposure to air 
pollution is significantly associated with a higher risk of 
neurological health deterioration, even at concentrations 
less than the current national standards. Our findings 
suggest that policies that result in further reductions 
in ambient PM2·5 concentrations can yield substantial 
health benefits in the ageing US population, even for 
those already exposed to low PM2·5 concentrations.
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