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AbstractAbstractAbstractAbstract    

Many studies have reported that PM2.5 was associated with mortality, but these were criticized for 

unmeasured confounding, not using causal modeling, and not focusing on changes in exposure 

and mortality rates. Recent studies have used propensity scores, a causal modeling approach that 

requires the assumption of no unmeasured confounders.  

We used differences in differences, a causal modeling approach that focuses on exposure changes, 

and controls for unmeasured confounders by design to analyze PM2.5 and mortality in the U.S. 

Medicare population, with 623,036,820 person-years of follow-up, and 29,481,444 deaths. We 

expanded the approach by clustering ZIP codes into 32 groups based on racial, behavioral and 

socioeconomic characteristics, and analyzing each cluster separately. We controlled for multiple 

time varying confounders within each cluster. A separate analysis examined participants whose 

exposure was always below 12 µg/m3.We found an increase of 1 µg/m3 in PM2.5 produced an 

increased risk of dying in that year of 3.85x10-4 (95% CI 1.95 x10-4, 5.76 x10-4 ). This corresponds to 

14,000 early deaths per year per 1 µg/m3. When restricted to exposures below 12 µg/m3, the 

increased mortality risk was 4.26 x10-4 (95% CI 1.43x10-4, 7.09 x10-4). Using a causal modeling 

approach robust to omitted confounders, we found associations of PM2.5 with increased death rates, 

including below U.S. and E.U. standards.  

Key words: Air pollution, PM2.5, causal, difference in differences, mortality 
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1. Introduction 

The Clean Air Act requires the US Environmental Protection Agency (EPA) to set National 

Ambient Air Quality Standards (NAAQS) to protect vulnerable populations with an adequate 

margin of safety. Many studies have reported associations of PM2.5 and mortality and morbidity 

following long and short-term exposure(Abu Awad et al., 2019; Beelen et al., 2014; Crouse et al., 

2015; Di et al., 2017; Hoek et al., 2013; Pinault et al., 2016; Pope et al., 2019; Vodonos et al., 

2018). These were undertaken by many investigators with over 50 cohorts in the most recent PM2.5 

meta-analysis(Vodonos et al., 2018), and have resulted in EPA sequentially tightening the PM2.5 

standard. The global burden of disease ranks air pollution among the largest public health risks.  

Recent studies have reported associations between PM2.5 and mortality at concentrations below the 

2012 U.S. EPA NAAQS or World Health Organization air quality guidelines(Di et al., 2017; 

Wang et al., 2016; Yang et al., 2012). However, some have criticized many of these studies for not 

using causal modeling approaches.  

Causal modeling methods can aid in assessing causality. The general approach is to try to make an 

observational study closely mimic a randomized trial. In addition, causal methods provide marginal 

estimates of the effects of exposure,  that do not depend on the distribution of the covariates in the 

study population(Imai and van Dyke, 2004). A common approach is to use propensity score 

matching or inverse probability weighting to make the exposure independent of all measured 

confounders(Baccini et al., 2017; Rubin, 1997). Recent studies have used that approach to 

examine the association of PM2.5 with mortality, and provided robust findings(Abu Awad et al., 

2019; Schwartz et al., 2018; Wei et al., 2020; Wu et al., 2020; Yitshak-Sade et al., 2019). However, 

propensity scores only control for measured confounders, and therefore do not address the 
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argument that there is unmeasured confounding. Hence it is important to complement that 

approach using methods that can address unmeasured confounders.  

Approaches that control for unmeasured confounders by design include difference-in-differences 

(DID) analyses (Wang et al., 2016; Yitshak-Sade et al., 2019). In a classical DID model, the mean 

response is calculated for the exposed and non-exposed groups in pre-exposure and post-exposure 

periods. Since all slowly varying predictors of outcome such as socioeconomic status (SES), 

smoking, obesity, etc. are the same in each group in both periods, the difference between 

outcomes in the two periods in the exposed group cannot be confounded by those variables. The 

difference between pre-exposure and post-exposure periods in the unexposed group is a negative 

outcome control for the difference in the exposed group. It controls for changes in an outcome 

due to covariates that can change between periods similarly between the two locations. The 

difference in these pairs of differences is a causal estimate, assuming that no other exposure has 

affected the two groups differently over time(Donald and Lang, 2007). Because the DID approach 

examines the effect of changes in exposure (post vs pre periods) on change in outcome, it is 

precisely the type of study that EPA’s CASAC says it prefers. The method has been generalized to 

look at more than two locations, more than two time periods, and continuous, time varying 

exposures(Wang et al., 2016).  With multiple locations time-invariant omitted confounders are 

controlled using an indicator variable for each location. However, it still require the assumption 

that changes in mortality rates by year due to changing risk factors are common across locations. 

Here we simultaneously adopt two approaches to relax that assumption, and hence strengthen the 

evidence for causality. We apply them to assess whether changes in PM2.5 are associated with 

changes in mortality rates in a national cohort of Medicare participants in the U.S. In addition, as 
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few previous cohort studies have controlled for temperature, we adjusted for mean warm season 

and mean cold season temperature.  

2.0 2.0 2.0 2.0 Data and MethodsData and MethodsData and MethodsData and Methods    

2.1 Medicare cohort 

We obtained the Medicare beneficiary denominator file, which contains information on all 

Medicare participants in the U.S., from the Centers for Medicare and Medicaid 

Services(RESDAC, 2018). We followed all beneficiaries’ ≥65 years in the contiguous U.S. from 

2000 to 2016. Medicare insurance covers over 95% of the population ≥65 years of age in the 

United States. Medicare participants alive on January 1 of the year following their enrollment in 

Medicare entered the open cohort, and follow-up periods were calendar years. For the DID 

analysis, we computed an annual mortality rate in each ZIP code, in each group stratified by age 

(>84 or not), sex, race, and Medicaid coverage. This study was approved by the human subjects 

committee at the Harvard T. H. Chan School of Public Health. 

2.2 Covariates  

From the Medicare denominator file for each calendar year, we obtained the age, sex, race, ZIP 

code of residence for that year, eligibility for Medicaid for that year, and date of death (or 

censoring) of each participant. Age, ZIP code, and Medicaid eligibility were updated annually. This 

file is publicly available from the Centers for Medicare and Medicaid Services(RESDAC, 2018). 

We obtained small area–level social, economic, and housing characteristic variables from the U.S. 

Census Bureau 2000 and 2010 Census Summary File 3(Bureau, 2010) at the ZIP code tabulation–

area level (ZCTA) and the American Household Survey for each year after 2010. These included 

percent of people ≥ 65 living in poverty, median household income, median house value, percent 
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of owner occupied homes, percent black, percent Hispanic, population density, and education. 

We updated these variables for missing years by linearly extrapolating between the measured years. 

In addition, the county-level percentage of people who ever smoked and their mean body mass 

index (BMI) were obtained from the CDC Behavioral Risk Factor Surveillance survey(CDC, 2013) 

, which were then assigned to each ZCTA within the county and updated each year. From the 

Dartmouth Health Atlas, we obtained percentage of Medicare participants who had a hemoglobin 

A1c test, a low-density lipoprotein cholesterol (LDLC) test, a mammogram, an eye exam, and a 

visit to an annual checkup for each year in each hospital catchment area and assigned it to all 

ZCTAs in that area(Wennberg and Cooper, 1996). We also computed the distance from each ZIP 

code centroid to the nearest hospital.  To capture long-term smoking history of Medicare 

participants in each ZIP code, we computed their hospitalization rate for lung cancer by ZIP code 

for each year. This risks over-control because air pollution has been associated with increased risk 

of lung cancer. To capture year-to-year changes in mortality rates due to temperature, we 

downloaded daily temperature data on a 12km grid from the NASA NLDAS-2 website 

(https://ldas.gsfc.nasa.gov/index.php/nldas/v2/models).  We averaged all grid cells within the 

boundaries of a ZIP code, and constructed two measures for each year, the average temperature in 

the warm months (April-September) and in the cold months (October-March).  

2.3 Exposure assessment 

We estimated exposure using a validated prediction model calibrated to measurements at almost 

2000 monitoring stations using an ensemble of machine learners that provided daily estimates for a 

1km grid of the contiguous U.S.(Di et al., 2019; Di et al., 2020). In brief, the model used data 

from multiple sources including predictions of chemical transport models (GEOS-Chem, CMAQ, 

and MERRA-2), meteorological data, land-use terms, and satellite-based measures of aerosol 



8 
 

optical depth, surface reflectance, and absorbing aerosol index. We trained a neural network, a 

random forest, and a gradient boosting machine to monitoring data from the United States 

Environmental Protection Agency (EPA) Air Quality System to generate daily predictions on a 1×1 

km grid. The models were fit using data from all years. The three predictions for PM2.5 were 

combined in a nonlinear geographically weighted regression. The model showed good 

performance with ten-fold cross validation on held out monitoring sites yielding an out of sample 

R2 of 0.89 for annual average predictions of PM2.5. Penalized splines showed linear relationships 

between observed and predicted PM2.5 from 0 to 60 µg/m3. Predictions for all grid cells whose 

centroids were inside the ZIP code boundary were averaged for each year and assigned to 

participants in that ZIP code in that year.  

2.4 Statistical analysis 

The standard DID estimator for a continuous predictor posits that  

�(���) = �	 + ���
�.� + ���� + ����     (1) 

where ��� is the mortality rate in ZIP code � in demographic group (by age >84 or not, sex, race, 

and Medicaid coverage) �, �� are the time-invariant or slowly changing confounders in ZIP code �, 

�� are the time varying confounders that are common across ZIP codes. The �� are controlled by 

fitting individual intercepts for each ZIP code. The time varying confounders are removed by 

fitting a nonlinear time trend; we used a natural spline function of year with 3 degrees of freedom, 

yielding: 

������ = �	 + ���
�.� + �� + ��(����, 3)    (2) 

where �� is a dummy variable for each ZIP Code. Since ZIP code is controlled, this model 

compares year-to-year variations around ZIP code average PM2.5 and common time trend to year-
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to-year variations of mortality rates about ZIP code average and common time trend. Differences 

in e.g. SES, smoking, or diabetes between ZIP code are removed by the dummy variable for ZIP 

code. For a causal interpretation of the DID estimate to hold, we must assume that all the ZIP 

codes have parallel long-term time trends in mortality rates, other than those caused by different 

time trends in PM2.5.  

If covariates producing different time trends in mortality rate by ZIP code are not correlated with 

ZIP code specific PM2.5 trends, the interpretation still holds. It would be preferable to further 

weaken this assumption.  

We added two methods to relax the parallel trends assumption, and combined them in our 

analysis. We added to equation (2) terms for confounders that we have measured that change over 

time, possibly differentially by ZIP code. This will control for any temporal trends due to changes 

in these covariates, which include the SES, race, demographic, behavioral, and health access 

variables described above. Second, we grouped ZIP codes based on the above covariates and fit 

separate time trends in each group. We think that ZIP codes that are similar in racial composition, 

percent living below the poverty level, population density, smoking rates etc. are more likely to 

have similar time trends in mortality rates than disparate ZIP codes. To accomplish this, we fit a 

principal component analysis to all the listed potential confounders and took the first 5 principal 

components. We classified each ZIP code into whether it was higher or lower than average on 

each of the 5 components, producing 32 categories of ZIP codes. In each of these 32 categories of 

ZIP codes, we fit separate splines for time trend and separate control for all of the covariates. This 

controls for time trends in measured covariates such as racial composition, median income, etc, 

and fits 32 separate time trends to the data to capture any trends unexplained by time trends in the 

measured covariates. It also allows the effects of the measured covariates to differ by the 32 
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different groups. In addition by performing analyses stratified by the 32 different groups we are 

also controlling by matching for the covariate clusters (e.g. SES and race) that characterize each 

group. Combining these, the final modeling approach is to fit 32 models (k=1:32) and meta-analyze 

the 32 values of β1.  

����� , "� = �	 + ��#�
25 + �� + ��# + ��(����, 3, ") + ����#  (3) 

Here �� are indicator variables for each ZIP code, ��# are the time varying covariates whose time 

trends may differ by ZIP code and by which group (k) the ZIP code is in, ��(����, 3, ") is a 

natural spline for time trend with 3 degrees of freedom for each group ", and ��# is an indicator 

variable for each age-race-sex-Medicaid stratum in group ". Results were combined over strata 

using a random effects meta-analysis.  

Finally, equation (3) embodies an additive, rather than multiplicative model for the rate of 

mortality in each ZIP code-demographic group. This allows us to estimate the additive effect of 

PM2.5 on the probability of dying, provides more interpretative interaction terms, and provides a 

marginal effect estimate (i.e. not dependent on the distribution of the covariates, as a multiplicative 

model would be). Additive probability or rate models give unbiased estimates of effect just as the 

more usual logistic models, but biased estimates of standard errors(Caudill and Jackson, 1989). 

Therefore have used robust standard errors to estimate the confidence intervals. In a second 

analysis, we reran the analysis on data restricted to persons whose exposure was always below 12 

µg/m3, the U.S. standard for PM2.5.  

3.03.03.03.0 ResultsResultsResultsResults    

Table 1 shows the characteristics of the Medicare cohort between 2000 and 2016. There were 

623,036,820 person-years of follow-up during the study, and 29,481,444 deaths.  85.4% of the 
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participants were white, and 12.9% were covered by Medicaid, which provides additional benefits 

to the poor. The mean PM2.5 during the study was 10.3 µg/m3.  

Table 1Table 1Table 1Table 1    

Variable Values 

YearYearYearYear     

     Mean (SD) 2009.5 (4.90) 

     Median [25%, 75%] 2010 [2004, 2013] 

MaleMaleMaleMale    42.8 %  

RaceRaceRaceRace     

     Black 8.4%  

     Other 6.2%  

     White 85.4%  

Age > 84Age > 84Age > 84Age > 84    13.2% 

Medicaid CoverageMedicaid CoverageMedicaid CoverageMedicaid Coverage    12.9% 

ZIP Code CovariatesZIP Code CovariatesZIP Code CovariatesZIP Code Covariates     

Median IncomeMedian IncomeMedian IncomeMedian Income     

     Mean (SD) $53,177 ($22,082) 

     Median [25%, 75%] $47,998 [$38,030, $63,031] 
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Median House ValueMedian House ValueMedian House ValueMedian House Value     

     Mean (SD) $200,139 ($159,728) 

     Median [25%, 75%] $150,400 [$98,600, $240,300] 

Percent ZIP code BlackPercent ZIP code BlackPercent ZIP code BlackPercent ZIP code Black     

     Mean (SD) 11% (17.9%) 

     Median [25%, 75%] 3.7% [1.1%, 12.0%] 

Percent ZIP code HispanicPercent ZIP code HispanicPercent ZIP code HispanicPercent ZIP code Hispanic     

     Mean (SD) 12.6% (16.4%) 

     Median [25%, 75%] 5.3% [2.1%, 14.6%] 

Percent >65 below poverty  Percent >65 below poverty  Percent >65 below poverty  Percent >65 below poverty       

     Mean (SD) 9.5% (6.5%) 

     Median [25%, 75%] 7.9% [5.3%, 11.8%] 

Percent Low EducationPercent Low EducationPercent Low EducationPercent Low Education     

     Mean (SD) 25.3% (14.7%) 

     Median [25%, 75%] 22.6% [14.2%, 33.7%] 

Percent with annual MammogramPercent with annual MammogramPercent with annual MammogramPercent with annual Mammogram     

     Mean (SD) 63.7% (7.2%) 

     Median [25%, 75%] 63.9% [59.2%, 68.2%] 
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Percent with ambulatory VisitPercent with ambulatory VisitPercent with ambulatory VisitPercent with ambulatory Visit     

     Mean (SD) 77.8% (6.2%) 

     Median [25%, 75%] 79.0% [74.4%, 82.1%] 

Population Density Population Density Population Density Population Density (persons/mi2)  

     Mean (SD) 3397 (9032) 

     Median [25%, 75%] 967 [167, 3353] 

Percent Owner OccupiedPercent Owner OccupiedPercent Owner OccupiedPercent Owner Occupied     

     Mean (SD) 68% (16%) 

     Median [25%, 75%] 70.8% [59.8%, 79.2%] 

Mean BMI (kg/mMean BMI (kg/mMean BMI (kg/mMean BMI (kg/m2222))))     

     Mean (SD) 27.5 (1.58) 

     Median [25%, 75%] 27.3 [26.7, 28.0] 

Distance to nearest hospital Distance to nearest hospital Distance to nearest hospital Distance to nearest hospital (km)(km)(km)(km)     

     Mean (SD) 6.5 (7.4) 

     Median [25%, 75%] 3.90 [1.98, 8.07] 

Ever SmokerEver SmokerEver SmokerEver Smoker     

     Mean (SD) 46.2% (6.8%) 

     Median [25%, 75%] 46.2% [41.8%, 50.4%] 
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Percent annual HbA1c test Percent annual HbA1c test Percent annual HbA1c test Percent annual HbA1c test      

     Mean (SD) 83.1% (4.9%) 

     Median [25%, 75%] 83.7% [80.5%, 86.3%] 

Lung Cancer Rate (x 10Lung Cancer Rate (x 10Lung Cancer Rate (x 10Lung Cancer Rate (x 10----4444))))     

     Mean (SD) 3.9 (2.8) 

     Median [25%, 75%] 3.3 [1.9, 4.9] 

Percent annual LDLPercent annual LDLPercent annual LDLPercent annual LDL     

     Mean (SD) 79.5% (6.2%) 

     Median [25%, 75%] 80.1% [76.1%, 83.5%] 

Percent Annual Eye ExamPercent Annual Eye ExamPercent Annual Eye ExamPercent Annual Eye Exam     

     Mean (SD) 67.4% (6.4%) 

     Median [25%, 75%] 67.1% [63.9%, 71.0%] 

PMPMPMPM2.52.52.52.5    (µg/m(µg/m(µg/m(µg/m3333))))     

     Mean (SD) 10.3  (3.1) 

     Median [25%, 75%] 9.8 [7.9, 12.0]  
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In the meta-analysis of the results of the 32 strata-specific DID analyses, we found that the 

probability of dying in each year increased by 3.85x10-4 (95% CI 1.95 x10-4 , 5.76 x10-4 ) for each 1 

µg/m3 increment in PM2.5 in that year. The I2 statistic for heterogeneity was 42%. When we 

restricted our analysis to persons whose exposure was always below 12 µg/m3 during the follow-up 

period, we found a larger effect size, with the probability of dying in each year increased by 4.26 

x10-4 (95% CI 1.43x10-4, 7.09 x10-4) per 1 µg/m3 increase in PM2.5. Interaction terms for male gender, 

age > 84, and race were fit in the full data. Sex was a significant modifier (p for interaction <0.001), 

with larger effects in males ( 6.81x10-4, 95% CI 4.14x10-4 , 9.48x10-4 ) then females(1.20x10-4, 95% 

CI -8.80x10-5, 3.29x10-4). These results are shown in Figure 1. There was no interaction by age. 

Interaction models for race did not converge because residential segregation in the U.S. resulted in 

groups with too few Blacks or Asians and other races. Instead, we reran the analysis without 

separate models for each of the 32 groups. There was no significant interaction by race.   
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4.0 4.0 4.0 4.0 DiscussionDiscussionDiscussionDiscussion    

Using a difference in differences design applied to a linear rate model, we found that each 1 µg/m3 

increment in PM2.5 was associated with a 3.85 x10-4 increase in the probability of dying in a given 

year. If the difference in differences assumptions are met, this is a causal increase. We believe they 

are met for the following reasons. First, since this design controls for each ZIP code, all individual 

and neighborhood level confounders that change little over time are controlled, whether measured 

or not. This includes most of the variables (e.g. SES, smoking history, diet) that have be posited as 

potential confounders. Consequently, only time varying factors can be confounders. Second, we 

controlled for potential confounding in each ZIP code due to time trends in median household 

income, median home value, percent owner occupied housing, percent of ZIP code that is Black, 

percent of households that are Hispanic, percent of persons aged 65 or older living in poverty, 

smoking rate, BMI, Medicaid eligibility, educational attainment, population density, lung cancer 

rates, multiple measures of the adequacy of medical care, and summer and winter temperature. 

Third, we grouped the ZIP codes by these factors, and fit separate nonlinear time trends within 

each of 32 groups to capture any remaining time trends due to omitted confounders could differ 

between groups, but would be similar within group.  This approach effectively looks at the within 

ZIP code fluctuations in exposure around the ZIP code mean, trend due to measured time-varying 

covariates, and common trends by group of ZIP codes. It compares that to the same deviation in 

mortality.  Such an approach, looking at yearly deviations from trend and ZIP code mean in 

exposure and outcome, is inherently examining the relationship of changes in exposure to changes 

in outcome. This also addresses the issue of whether previous studies effects are due to primarily 

recent exposure, or reflect long term exposure, including when pollution concentrations were 
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higher. The dummy variable for each ZIP code controls for long term exposure at that ZIP code, 

and the removal of nonlinear time trends during the period under study focuses the exposure 

variable on the year of the death. EPA Regulatory Impact Analyses spread the estimated mortality 

effects out over a 20 year period. This study provides an estimate of immediate impact. Because 

our study incorporates 17 years of follow-up, each year has a new exposure, and a new effect.    

 In addition this paper adds to the sparse literature controlling for temperature in studies of long-

term exposure to air pollution, which some have argued is an important confounder. Further, we 

estimated the probability of dying in a year, which is more easily interpretable than an 

instantaneous hazard rate, and by using an additive rather than multiplicative model we estimated 

the marginal effect if PM2.5, not the conditional effect estimated by Cox’s proportionate hazard 

model.  This allows one to estimate attributable deaths in health impact assessments without 

making further, possibly implausible assumptions required when using a conditional estimate.  

Some scientists, including the current chair of EPA’s Clean Air Scientific Advisory Committee 

(CASAC), assert that studies using standard epidemiological methods should be given little weight 

in revising the NAAQS, and propose restricting to studies using causal methods, and particularly 

ones showing changes in air quality are associated with changes in mortality(CASAC, 2019). The 

recent meetings of EPA’s CASAC highlighted the importance of these issues(CASAC., 2019). 

Their main criticism is that traditional approaches only show associations that may be confounded, 

vary depending on modeling approaches, and do not inform causality, which can only be 

addressed by causal methods. They also emphasize that unmeasured variables, particularly 

individual characteristics, socioeconomic status, and temperature may confound the published 

literature.(Cox and Popken, 2015) EPA recently proposed not tightening the NAAQS for PM2.5, 

relying on these arguments. This paper provides an analysis using a causal method, controlling for 
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temperature and socioeconomic status, and all individual and area level potential confounders, 

measured or unmeasured, that vary slowly over time.  

That  EPA proposal also asserted there was insufficient evidence of a causal association at lower 

levels. When we restricted our analysis to include only persons who never experienced 

concentrations above 12 µg/m3 during 17 years of follow-up we found a somewhat larger effect 

estimate of 4.26 x10-4 (95% CI 1.43x10-4, 7.09 x10-4) per 1 µg/m3 increase in PM2.5..5. This indicates 

that the current U.S. and E.U. standards are not sufficient to protect public health, and that the 

WHO standard of 10 µg/m3 is unlikely to protect public health. 

Other studies have applied causal modeling methods to air pollution, primarily propensity score 

methods(Abu Awad et al., 2019; Schwartz et al., 2018; Wang et al., 2017; Wei et al., 2020; Wu et 

al., 2020; Yitshak-Sade et al., 2019). These methods use the relationship between exposure and 

confounders to render the exposure independent of all of the measured confounders, and hence 

mimic a randomized trial. They have all reported that PM2.5 increases mortality rates. The 

difference in differences approach complements those studies by its ability to deal with 

unmeasured confounders. All personal and small area time invariant or slowly varying confounders 

are removed by design, whether measured or not. All confounders whose time trends are due to 

measured time-varying confounders or similar within groups defined by race, SES, medical access, 

and behavioral characteristics are controlled whether measured or not. Hence, this paper adds 

assurance about many possible unmeasured confounders to the large literature of associational 

studies and smaller literature of propensity score-based models that provide causal estimates. 

Together, they provide strong evidence for a causal effect of PM2.5 on mortality rates.  

 Since we estimate the probability of dying in each year and not a hazard rate, our effect sizes are 

not directly comparable to the other causal modeling studies. Compared to the larger literature, a 
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recent meta-analysis of then extant cohort studies estimated the effect size at 10 μg/m3  (the mean 

concentration in this study) as a 1.29% increase in the rate per μg/m3 increase in PM2.5, (95% CI 

1.09%, 1.50%)(Vodonos et al., 2018).The annual mortality rate in the Medicare cohort was 4.7x10-

2. A 1.29% increase in that rate is an additive increase of 6.1x10-4. The results from a previous Cox 

regression analysis of the Medicare cohort from 2000-2012 translate to an additive increase of 

3.4x10-4.  These are similar to our results. Hence these other studies are unlikely to have been 

confounded by temperature, or slowly varying SES, racial, and behavioral factors which this study 

controlled for.  

 

Nor are these effects small. Multiplying our effect estimates by the total person-years in the 

Medicare cohort, we estimate that had everyone had 1 µg/m3 lower exposure, 239,900 early deaths 

would have been avoided during the follow-up period. EPA’s National Contingency Plan (40 

C.F.R. § 300.430(d)(1)) states that the range of acceptable liflifliflifetime risksetime risksetime risksetime risks (of developing cancer) for 

carcinogens should be set between 1 in 10,000 and 1 in a million over a 70-year lifetime. Thus, 

when EPA considers regulations for carcinogens, it typically regulates if lifetime riskslifetime riskslifetime riskslifetime risks exceed 1 in a 

hundred thousand. In contrast, 1 µg/m3 of exposure below the current EPA standard for only 1 

year results in an increased risk of dying of 4.26 per ten thousand in our study.  

Our finding has limitations. First, DID analyses depend on the change over time in other ZIP 

codes with different changes in PM2.5 to serve as controls for changes over time in outcome that 

may have occurred independent of exposure. If the time trends in the ZIP codes are different, this 

control will fail. We have dealt with this by controlling for time trends in measured covariates and 

grouping ZIP codes into 32 groups that are similar on age, sex, race/ethnicity, SES, and access to 

medical care, and doing the analysis separately within each group, arguing that the time trends in 
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mortality rates will be similar within group. However, we cannot exclude the possibility that they 

are not. Second, our exposure estimates are not perfect. While an out of sample R2 of 0.89 is high, 

there is still some exposure error, which may bias estimates. In addition, personal exposure within 

a neighborhood varies around the neighborhood ambient concentration. However, we believe 

most of that difference is likely to be Berksonian error, and hence not bias coefficients. Moreover, 

the principle reason for the differences between ambient and personal exposure are behavioral 

(more driving, more cooking, etc), and incorporating exposure related to those factors would 

require controlling for other related risk factors (e.g. stress from driving) that are not confounders 

of the neighborhood ambient concentrations. Hence, this exposure error is beneficial from the 

point of view of reducing confounding, as has been pointed out previously(Weisskopf and 

Webster, 2017).  

In conclusion, we have found an effect of PM2.5 on daily deaths using a causal modeling approach 

robust to unmeasured confounders. The effect size is similar to those reported in associational 

studies, suggesting that unmeasured confounders are not an issue with them, and is large enough to 

indicate that reducing PM2.5 concentrations in the U.S. could save tens of thousands of premature 

deaths each year.  
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Figure Legend. Figure 1 shows the effect size estimate (absolute increase in the death rate for each 

1 µg/m3 increase in PM2.5 exposure, and 95% Confidence Interval) for the entire Medicare Cohort 

in 2000-2016 (All), for only persons never exposed to PM2.5 concentrations above 12 µg/m3 (low) 

during the follow-up period, for males in the entire Medicare Cohort (males) and for females in 

the entire Medicare Cohort.  
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