2011 National Air Toxics Assessment (NATA)

NACAA April, 2016

Madeleine Strum, Ted Palma, Mark Morris
US Environmental Protection Agency
Office of Air Quality Planning and Standards

Briefing Overview

Background

Methods

National Results

Website/Map App

Background

- 2011 NATA is the 5th National-scale assessment (1996, 1999, 2002, 2005) and was released to the public Dec 17, 2015
- Concentrations, exposures, and risks based on air quality modeling of emissions from the 2011 National Emissions Inventory (NEI) for Clean Air Act Hazardous Air Pollutants (HAP) and diesel PM (DPM)
- NATA is a screening-level characterization of air toxics across the nation
 - Nationwide assessment with <u>census tract</u> resolution
 - Cancer and noncancer risk estimates for about 140 HAPs with health data based on chronic exposures
 - Ambient concentration estimates for 180 CAA HAPs plus DPM
- NATA Uses
 - To identify locations of interest for further study
 - To prioritize pollutants and emission sources
 - To inform monitoring programs

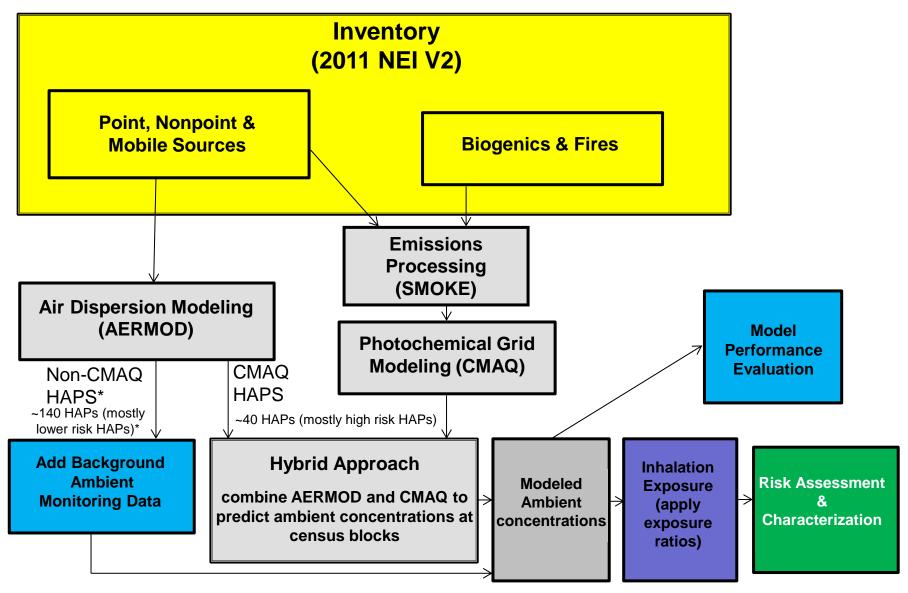
Limitations

- Emissions, modeled ambient concentrations and estimated inhalation exposures from outdoor sources and inhalation route of exposure only
- Results more uncertain at finer geographic scales
 - Surrogates used to allocate mobile and nonpoint source emissions
 - Results based on modeled data, not ambient monitoring data
- Results should not be used to compare risks among different areas of the country
 - Underlying emissions data vary in level of detail from state to state
- 2011 NATA results should not be compared to previous NATAs
 - Changes in results are due to both actual emission changes and the use of different modeling and emissions processing techniques.

Who Uses NATA?

EPA

- Office of Air Quality Planning and Standards (OAQPS)
 - Report to Congress, Monitoring, Grants, Risk and Technology Review (RTR)
- Office of Transportation and Air Quality (OTAQ)
 - National Rules
- Office of Research and Development (ORD)
 - Research agenda, field studies, community tools (Community-Focused Exposure and Risk Screening Tool) – expected release later this year
- Office of Environmental Information (OEI)
 - Environmental Justice /Community Tool— EJ SCREEN NATA is one of several environmental layers in the soon to be released EJSCREEN model developed by OEI/OEJ – possible release later this spring


States

- Many State Air Toxics Programs set priorities using NATA (Oregon, New York, New Jersey)
- Identify gaps in emissions inventories, encourage inventory improvements

Academia

NATA referenced in over a hundred papers and numerous health studies

2011 NATA Approach

Features of the NEI for the 2011 NATA

- Complete national HAP/CAP inventory based on 2011 emissions
- Data reported through EIS by State/Local/Tribal Agencies
 - Inventory includes:
 - Point emissions
 - Nonpoint
 - Mobile model inputs
 - Facility configurations (facility/unit/process/release point)
- Estimated/Gap filled by EPA
 - TRI data, including range data
 - Compute HAPs from CAPs
 - Speciate chromium (TRI and State data)
 - Many nonpoint categories and Fires

Source Attribution – Concentrations/Risks by These Groups

Onroad and Nonroad

Refueling

Light duty gas

Light duty diesel

Heavy duty gas

Heavy duty diesel

Nonroad construction

Nonroad pleasurecraft

Nonroad gas other

Nonroad diesel other

Nonpoint nonroad

CMV-Ports
CMV-Underway

Locomotives

Nonpoint stationary

Bulk gasoline terminals

Chemical manufacturing

Mining

Industrial not elsewhere classified

Nonferrous metals

Oil and gas

Refineries

Storage and transfer

Gas stations (Stage 1)

Industrial, commercial institutional fuel combustion

Landfills

Surface coating and industrial solvent

Waste disposal other

Commercial Cooking

Miscellaneous nonindustrial

Residential wood combustion

Residential fuel combustion except wood

Consumer & commercial solvent

Solvent degreasing

Solvent dry cleaning

Non-industrial surface coating

Point

Airports

Railyards

Other point

Other (CMAQ only)

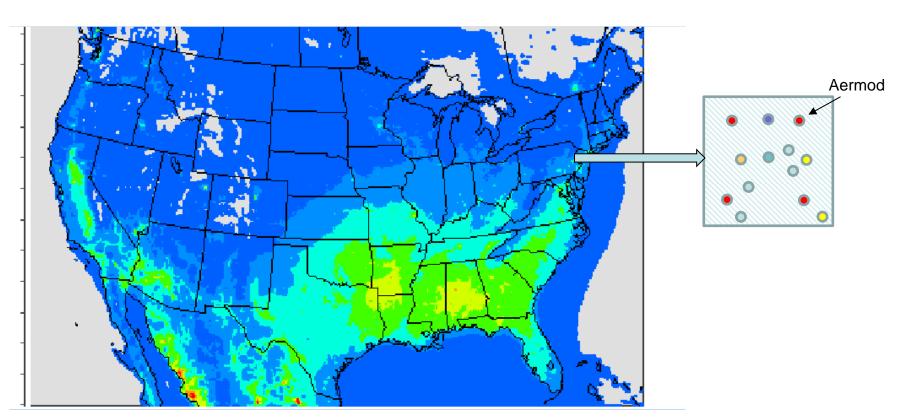
Fires

Biogenics

Secondary formation

2011 NATA General Approach Spatial Allocation

Category	Inventory Resolution	Spatial Approach for AERMOD	Spatial approach for CMAQ
Point (non Airports)	Point	Point – vertical stack and fugitive	12km by 12 grid cells, Vertical based on plume calculations
Airports	Point	Point – runways & 10mX10m areas	12km by 12 grid cells
Locomotives	Point (railyards) and County/Shape	Nonpoint - Tracts Point - Point Fugitives	12km by 12 grid cells
Commercial Marine Vessels	County/Shape	Shapes	12km by 12 grid cells
Onroad, Nonroad Equipment and other nonpoint	County	Tracts	12km by 12 grid cells
Fires (prescribed and wild)	Point	Not Modeled	12km by 12 grid cells, Vertical based on plume calculations


2011 NATA Modeling - Commercial Marine Vessels (CMV)

- Modeled in AERMOD as ~370 port shapes and ~3500 underway shapes
- CMV emissions assigned to shapes by EPA, reported to these shapes by S/L/T
- PM from diesel and residual oil vessels modeled as diesel PM
- Key pollutants: nickel, hexavalent chromium, arsenic, formaldehyde, diesel PM (noncancer only)

Hybrid – combine CMAQ & AERMOD in each grid cell

Air Toxics in CMAQ

Gas Phase – stationary & mobile

Pollutant	Inhalation Health Impacts
BENZENE	Cancer, Noncancer
FORMALDEHDYE	Cancer, Noncancer
ACETALDEHYDE	Cancer, Noncancer
1,3 BUTADIENE	Cancer, Noncancer
NAPHTHALENE	Cancer, Noncancer
ACROLEIN	Noncancer
METHANOL	Noncancer
XYLENES (M, O, P)	Noncancer
TOLUENE	Noncancer
PAHs (9 Groups)	Cancer

Particle and multi-phase – stationary & mobile

Pollutant	Inhalation Health Impacts
NICKEL	Cancer, Noncancer
HEX CHROMIUM	Cancer, Noncancer
ARSENIC	Cancer, Noncancer
CADMIUM	Cancer, Noncancer
BERYLLIUM	Cancer, Noncancer
MANGANESE	Noncancer
LEAD	Noncancer
DIESEL PM	Noncancer
MERCURY	Noncancer

Gas Phase – stationary

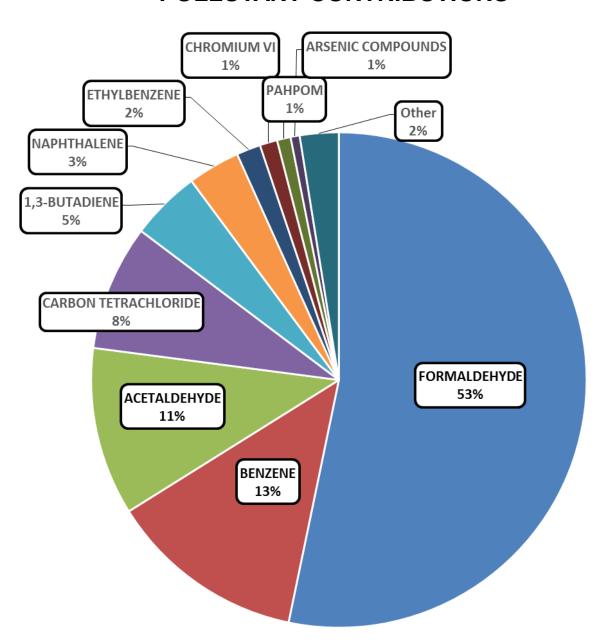
jas Phase – stationary		
Pollutant	Inhalation Health	
Foliutarit	Impacts	
ACRYLONITRILE	Cancer, Noncancer	
CARBON TETRACHLORIDE	Cancer, Noncancer	
CHLORINE	Noncancer	
CHLOROFORM	Noncancer	
1,4-DICHLOROBENZENE	Cancer, Noncancer	
1,3-DICHLOROPROPENE	Cancer, Noncancer	
ETHYLENE DIBROMIDE	Cancer, Noncancer	
ETHYLENE DICHLORIDE	Cancer, Noncancer	
ETHYLENE OXIDE	Cancer, Noncancer	
HEXAMETHYLENE-		
1,6-DIISOCYANATE	Noncancer	
HYDROCHLORIC ACID	Noncancer	
HYDRAZINE	Cancer, Noncancer	
MALEIC ANHYDRIDE	Noncancer	
METHYLENE CHLORIDE	Cancer, Noncancer	
PROPYLENE DICHLORIDE	Noncancer	
QUINOLINE	Neither	
1,1,2,2-		
TETRACHLOROETHANE	Neither	
2,4-TOLUENE DIISOCYANATE	Cancer, Noncancer	
TRICHLOROETHYLENE	Cancer, Noncancer	
TRIETHYLAMINE	Noncancer	
VINYL CHLORIDE	Cancer, Noncancer	

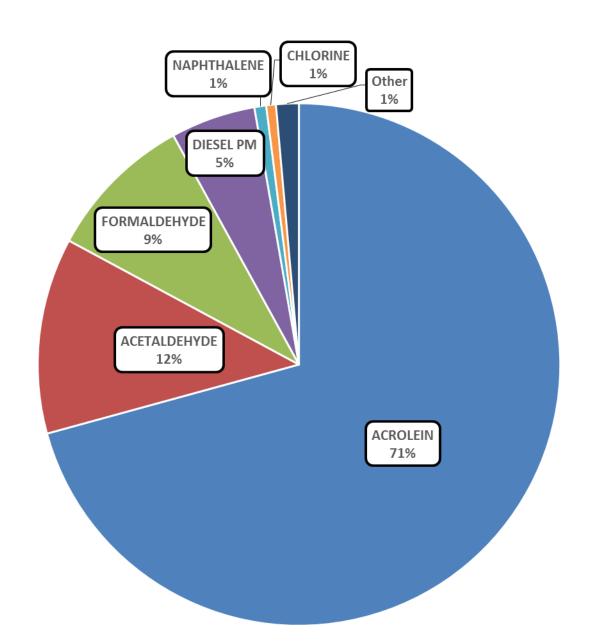
Hybrid Equation:

$$C_{hybrid_REC} = AERMOD_{REC} imes rac{CMAQ_{P_NFB}}{AERMOD_{AVG}} + CMAQ_{SEC_} + CMAQ_{FIRE} + CMAQ_{BIOG}$$

Adjusted AERMOD concentration from primary non-fire, non-biogenic sources

 $CMAQ$ secondary concentration from from fires (primary only)


- 6.6 million receptors (census) block centroids + evenly placed receptors
- 56,500 12km x12km grid cells that cover the continental US

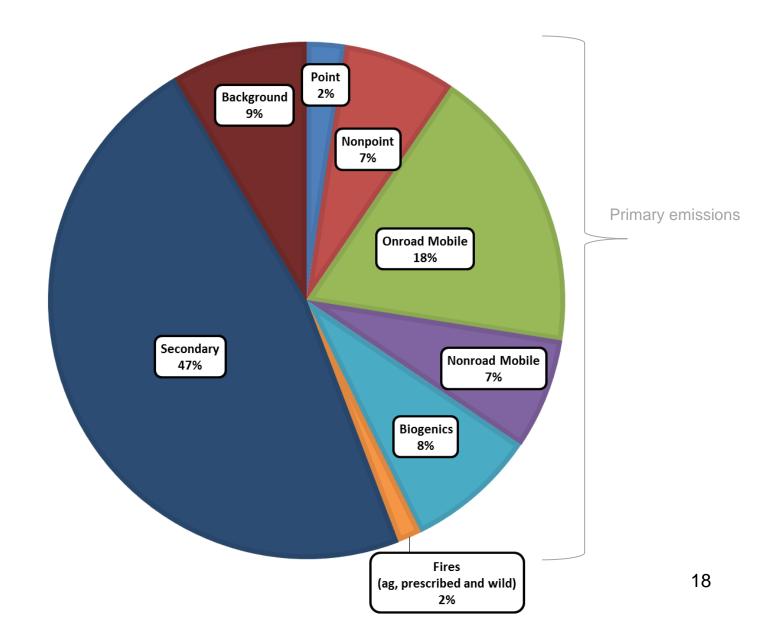

National Level Results

- Pollutants of Interest
- Sources of Interest
- Areas of Interest

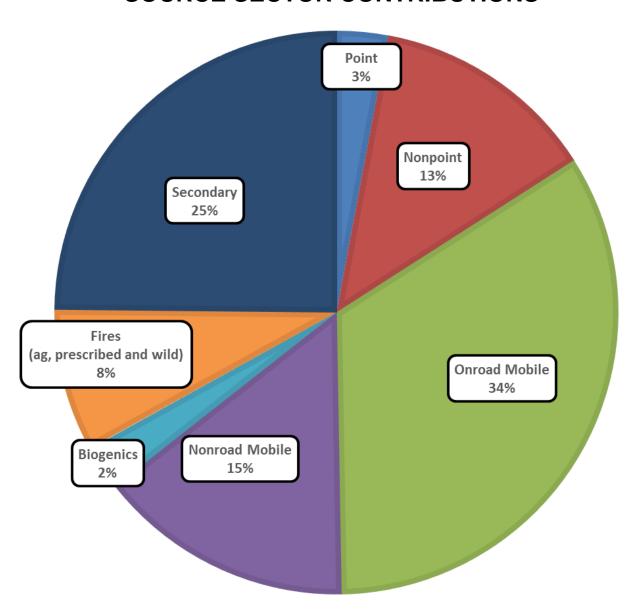
2011 NATA CANCER RISKS ENTIRE US (40-IN-1 MILLION) POLLUTANT CONTRIBUTIONS

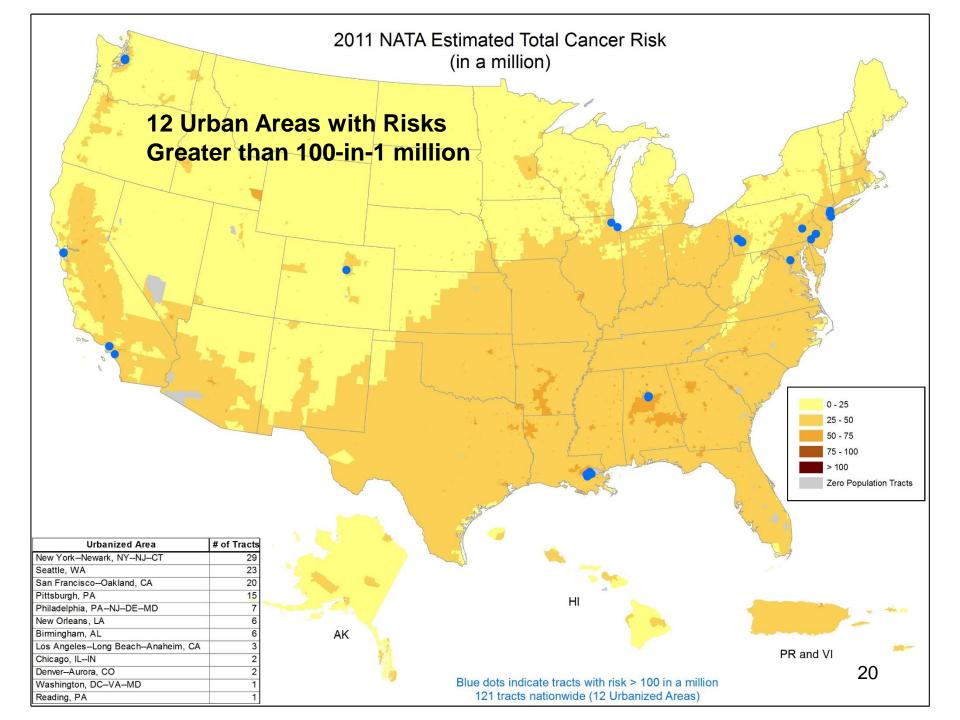
2011 NATA RESPIRATORY RISKS ENTIRE US (HI= 2) POLLUTANT CONTRIBUTIONS

Cancer Drivers and Contributors


FORMALDEHYDE
BENZENE
COKE OVEN EMISSIONS
CHLOROPRENE
CARBON TETRACHLORIDE
ACETALDEHYDE
L,3-BUTADIENE
NAPHTHALENE
ETHYLBENZENE
CHROMIUM VI (HEXAVALENT)
L,3-DICHLOROPROPENE
L,4-DICHLOROBENZENE
ARSENIC COMPOUNDS
THYLENE OXIDE
NICKEL COMPOUNDS
РАНРОМ

National Driver: Risks > 10 in a million for 25 million people;


Regional Cancer Driver: Risks > 1 in a M for 1 million people or > 100 in a M for 10,000 people;


National Cancer Contributor: Risks > 1 in a million for 25 million people; Regional Cancer Contributor: Risks > 1 in a million for 1 million people.

2011 NATA CANCER RISKS ENTIRE US (40-IN-1 MILLION) SOURCE CATEGORY CONTRIBUTIONS

2011 NATA RESPIRATORY RISKS ENTIRE US (HI= 2) SOURCE SECTOR CONTRIBUTIONS

Detailed NATA data – download from website

- Emissions Data County, Facility, Facility & Release Point
- Modeled Ambient and Exposure Concentration Data
 - Pollutant (180) and source category (broad) summaries at census tract level
- Cancer and Noncancer Risks
 - About 140 pollutants at census tract level
 - Pollutants and source group (41) summaries
 - Cancer risks expressed as in-1 million
 - Noncancer risks expressed as Hazard Indices

http://www.epa.gov/national-air-toxics-assessment

- Limitations
- Glossary of Terms
- Frequent Questions

2011 NATA Assessment

- 2011 Assessment Results
- 2011 NATA Map
- 2011 Assessment Methods

Ouick Links

- · Previous versions of NATA
- · Other environmental screening tools
- · Learn about risk assessment
- Hazardous Air Pollutants website
- Urban Air Toxics website