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So many PFAS compounds!
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CAS   697-18-7  

CAS    10493-43-3  

CAS    16090-14-5  

CAS    677-67-8

CAS     1187-93-5  

CAS   335-66-0  

CAS   3825-26-1
APFO  

CAS   335-67-1
PFOA 

CAS    3330-14-1

CAS    1623-05-8

CAS    428-59-1 

CAS    1682-78-6

CAS 2927-83-5

CAS   2062-98-8

CAS   4089-58-1

CAS   2641-34-1

How do we measure them?
How do we destroy them?



• Direct release of PFAS or PFAS products 
into the environment

− Use of aqueous film forming foam (AFFF) 
in training and emergency response

− Industrial facilities
− Incineration/thermal treatment facilities

• Landfills and leachates from disposal of 
consumer and industrial products 
containing PFAS

• Wastewater treatment effluent and land 
application of biosolids

Potential Sources of PFAS in the Environment
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Thousands of chemicals can potentially become air sources during
production, use, and disposal of PFAS-contaminated materials

PF
AS

Non-polymers

Perfluoroalkyl acids (PFAAs)
CnF2n+1R

Perfluoroalkyl carboxylic acids (PFCAs)
Perfluoroalkane sulfonic acids (PFSAs)
Perfluoroalkyl phosphonic acids (PFPAs)
Perfluoroalkyl phosphinic acids (PFPIAs)

Perfluoroalkane sulfonyl fluoride (PASF)
CnF2n+1SO2F

Perfluoroalkyl iodides (PFAIs)
CnF2n+1I

Per- and polyfluoroalkyl ethers (PFPEs)-based derivatives Polyfluoroalkyl ether carboxylic acids

Polymers

Fluoropolymers

Polytetrafluoroethylene (PTFE)
Polyvinylidene fluoride (PVDF)
Fluorinated ethylene propylene (FEP)
Perfluoroalkoxyl polymer (PFA)
Others

Side-chain fluorinated polymers
Fluorinated (meth)acrylate polymers
Fluorinated urethane polymers
Fluorinated oxetane polymers

Perfluoropolyethers

PASF-based derivatives
CnF2n+1SO2-R, R =  NH, NHCH2CH2OH, etc.

Fluorotelomer iodides (FTIs)
CnF2n+1CH2CH2I

FT-based derivatives
CnF2n+1CH2CH2-R, 
R = NH, NHCH2CH2OH, etc.



• Analytical Methods to detect, identify and quantify PFAS in 
emissions and ambient air

• Dispersion Modeling to predict air transport and deposition 
associated with air sources

•Effectiveness of Thermal Treatments for destroying PFAS 
materials 
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EPA PFAS Air-Related Research 
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Emissions Measurement Considerations/Challenges

• Emission sources are diverse:
– PFAS chemical manufacturers
– PFAS used in commercial applications
– PFAS emitted during thermal treatment of waste (e.g., AFFF, 

biosolids, municipal)
– Products of Incomplete Combustion (PICs)

• Process can alter emission composition

• Validated source and ambient air methods for PFAS do 
not exist, but some research methods are available

• Current emissions tests often target only a small number 
of PFAS compounds for analysis while significantly more 
may be present

Example Coating Process
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ORD PFAS Emissions Measurement Activities
• Supporting multiple State emissions testing campaigns

– States and Regions are those most concerned and looking to EPA for guidance
– ORD collaborating to provide technical guidance and measurement assistance
– Providing options for more comprehensive emissions characterizations
– Analysis of industrial emissions samples for non-targeted PFAS compounds
– Actively participating or leading field emissions tests

• Supporting EPA Program Offices
– Office of Air Quality Planning and Standards (OAQPS)
– Office of Land and Emergency Management (OLEM)

• Methods development research and field evaluations

• Conducting combined methods development and 
source characterization field testing where possible
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Semivolatile/Nonvolatile Sampling Methods
• Modified SW-846 Method 0010 (MM5) Train for polar 

and nonpolar PFAS compounds
• Extra XAD-2 trap for breakthrough
• Modified glassware rinses
• Separate solvent extractions for polar and nonpolar 

compounds
• Four (4) separate fractions for analysis

• Primary approach for targeted and non-targeted analyses
• Isotope dilution for targeted analyses
• Use of internal and pre-sampling surrogate standards 

(limited by availability of isotopically labeled standards)
• High resolution mass spec nontargeted analyses

• Other Test Method (OTM)-45 underway for polar PFAS 
compounds

• Expanding to include fluorotelomer alcohols (FTOHs)
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Volatile Sampling Methods
• Using SUMMA canisters (limits use to nonpolars)

• Sorbent traps (suitable for polars and nonpolars)

• Moisture and acid gases a problem for both 
approaches

• GC/MS analysis for targeted and non-targeted 
compounds

• C1-C3 targets
(e.g., CF4, CHF3, C2F4,C2F6, C3F6, C3F8, etc)

• Industrial PFAS
(e.g., E1, HFPO, FTOHs)

• High resolution mass spec nontargeted analyses
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Non-Targeted Analysis
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Molecular Formula:  C3HF5O3
Monoisotopic Mass:  179.984585 Da
[M-H]-:  178.977308 Da

Source:  Strynar et al. 2015; Sun et al. 2016

• High resolution mass spectrometry

• Software calculates exact number and 
type of atoms needed to achieve 
measured mass, e.g. C3HF5O3

• Software and fragmentation inform most 
likely structure

• With mass, formula, structure known, 
potential identities determined by 
database search
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Innovative Measurements Research
Field Deployable, Time of Flight-Chemical Ionization 
Mass Spectrometer (ToF–CIMS)
• Real-time measurement of polyfluorinated carboxylic acids 

(PFAS) and FTOHs
• Super sensitive (ppt measurement levels)
• Currently being evaluated as a process emissions analyzer

Total Organic Fluorine
• Combustion/Ion Chromatography?

• Potential technique

• Sample collection an important
aspect



Thermal Treatment of PFAS
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• Highly electronegative fluorine (F) makes carbon/fluorine (C-F) bonds particularly 
strong, require high temperatures for destruction

• Unimolecular thermal destruction calculations suggest that CF4 requires 1,440 oC for >1 second to 
achieve 99.99% destruction (Tsang et al., 1998)

• Sufficient temperatures, times and turbulence are required

• Functional group relatively easy to remove/oxidize
• Low temperature decarboxylation is an example
• Information regarding potential products of                                                                                  

incomplete combustion (PICs) is lacking ~90 ⁰C



Products of Incomplete Combustion (PICs)

• When formed in flames, F radicals quickly terminate chain branching reactions to act as an 
extremely efficient flame retardant, inhibiting flame propagation

• PICs are more likely formed with F radicals than other halogens such as chlorine (Cl)
• PICs may be larger or smaller than the original fluorinated Principal Organic Hazardous 

Constituents (POHC) of concern   
• CF2 radicals preferred and relatively stable, suggesting the possibility of reforming fluorinated alkyl chains
• Remaining C-F fragments may recombine to produce a wide variety of fluorinated PICs with no analytical 

method or calibration standards
• May result in adequate PFAS destruction but unmeasured and unquantified PICs

• Very little information is published on PFAS destruction
• Fluorine chemistry sufficiently different than Cl that we cannot extrapolate
• Analytical methods and PFAS standards are minimal with more needed
• Measurements focusing on POHC destruction may miss the formation of PICs

• Hazardous waste incinerators and cement kilns may well be effective, but what about municipal 
waste combustors and sewage sludge incinerators (i.e., lower temperatures)? 13



Incinerability & Mitigation Research

• Explore minimum conditions (temperature, time, fuel H2 or hydrogen gas) 
for adequate PFAS destruction

• Investigate relative difficulties in removing PFAS functional groups (POHC 
destruction) vs. full defluorination (PIC destruction)

• Effects of incineration conditions (temperature, time and H2) on PIC 
emissions

• Examine relative differences in the incinerability of fluorinated and well 
studied corresponding chlorinated alkyl species
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CFS Software for EPA
Reaction Engineering International (REI)

• The Configured Fireside Simulator (CFS)
• Developed for the Department of Defense to evaluate operations 

of the chemical demilitarization incinerators processing the US 
chemical warfare agent stockpile

• Destruction kinetics developed 
• Adapted to provide for the ability to run “what if” scenarios 

of waste streams contaminated with chemical and biological 
warfare agents

• EPA’s pilot-scale Rotary Kiln Incinerator Simulator (RKIS)
• Three commercial incinerators based on design criteria for actual operating facilities

• Medical/Pathological Waste Incinerator
• Hazardous Waste Burning Rotary Kiln
• Waste-to-Energy Stoker type combustor

• CFS uses chemical kinetic data for destruction derived from bench- and pilot-scale 
experiments at EPA’s Research Triangle Park, NC facility 15



Bench-scale Incineration Experiments

• Repurpose existing equipment (i.e., formerly used for 
oxy-coal)

• Small scale (L/min & g/min)

• Full control of post-flame temperature & time (2-3 sec)

• Able to add either gas or liquid PFAS through or 
bypassing flame

• Premixed or diffusion flames possible

• Platform for measurement methods development 
(e.g., SUMMA, sorbent, total F, Gas Chromatography –
Electron Capture Detector (GC/ECD), real-time 
instruments)
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Compressed air

TC

To impinger scrubber, 
ID fan/vent

P

1500 C (max)
3-zone furnace

PFAS gas

Premixed NG/
air burner

Natural gasPFAS
liquid syringe pump

Gas samples



Tube Furnace Experiments

• Thermal treatment with calcium oxide (CaO) from 250 to 800 °C

• Observe destruction of parent compound using two techniques: 
CIMS and sorbent tube analysis by thermal desorption–gas 
chromatography–mass spectrometry (TD-GC/MS)

• TD-GC/MS analyses show the presence of degradation products 
from fluorotelomer alcohols (FTOH) destruction 17

tube furnace
(200 - 800°C)

CIMS

thermocouple

0.5 L min-1

compressed 
lab air

FTOH 
source

(2 L min-1)

1.75 L min-1

sorbent tubes

overflow

humidified
nitrogen

CaO
(0.1 L min-1)

Experimental Setup PFAS Fluorotelomer 
Alcohols Tested: 



String Reactor Experiments
• New experiment that simulates industrial PFAS coating facilities

• Built from 3 existing furnaces
• Applies commercial dispersions to fiber (string)
• Full control of flows, times, temperatures, application rates
• Small scale (L/min & g/min) 
• Located in lab w/ real-time instruments

• Investigates key research questions:
• What PFAS & additives are present in different commercial 

dispersions?
• What PFAS (and other species) are vaporized during application 

processes?
• How do vapor phase PFAS emissions compare to dispersion 

compositions?
• Are surfactants (GenX, telomer alcohols) included in the vapor 

emissions?
• Are processing temperatures sufficient to transform PFAS?

• Cleave functional groups to produce new PFAS?
• Are processing temperatures sufficient to cleave C-F bonds 

and produce fluorine (F2) and hydrogen fluoride (HF)?
• How do processing temperatures and times affect vapor and 

aerosol emissions (mass and composition)? 18

Dry ~100 C

Fiber take-off

Gas
samples

TC

TC

TC

Gas
samples

Gas
samples

Bake 165-190 C

Sinter 360-400 C

Dip pan

Motorized 
fiber take-up

Dispersion metering



Pilot-scale Incineration Experiments
• 65 kW refractory lined furnace (aka Rainbow Furnace) 

with peak temperatures at ~1400 ⁰C, and >1000 ⁰C for 
~3 sec

• Combustor connected to facility air pollution controls
• Afterburner, baghouse, NaOH (sodium hydroxide) scrubber

• Introduce C1 and C2 fluorinated compounds with fuel, 
air, post flame to measure POHC destruction and PIC 
formation

• FTIR (Fourier-transform infrared spectroscopy) and other 
real-time and extractive methods

• Add modeling component using REI’s Configured 
Fireside Simulator (CFS) CFD/kinetic model to include 
C1 & C2 

• F chemistry from literature (Burgess et al. [1996])
19
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Planned Products
• ORD Products on Fundamental Understanding of Thermal Treatment

• Thermogravimetric Analysis/Mass Spectrometry (TGA/MS)Thermal Destruction Temperature Points with Off Gas 
Measurements on Potential Defluorination

• PFAS Model Incorporation of Published C1 and C2 Fluorocarbon Kinetics to Predict Simple PFAS Behavior in 
Incineration Environments

• Low Temperature Interactions of PFAS with Sorbents from Bench-Scale Experiments
• Thermal Destruction of PFAS from Pilot-Scale Experiments

• ORD Measurement Methods for PFAS
• Quantitative Assessment of Modified Method 5 Train for Targeted PFAS 
• PFAS Method OTM 45 
• Total Organic Fluorine Methods
• Non-targeted Measurement Approaches to Identify PFAS

• Other Contributions
• Supporting Incineration Guidance as part of the National Defense Authorization Act 

20
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Take Home Messages
• Reliable and comprehensive PFAS and PFAS-related emissions measurement 

methods are needed for multiple purposes

• Application to thermal treatment/incineration/combustion sources a major focus 
amongst a host of methods for all media

• Identifying what compounds need to be targeted for measurement is the hard part

• Non-targeted analyses are critical to knowing what compounds are present because 
you don’t find what you don’t look for

• Surrogate approaches are needed to know exactly what goes in and what comes out

• Need to have access to actual sources to evaluate methods and conduct 
comprehensive source characterizations

• ORD collaboration/partnership is integral



For More Information

• The research discussed in this presentation is part of EPA’s overall efforts to 
rapidly expand the scientific foundation for understanding and managing 
risk from PFAS.

• For more information on EPA’s efforts to address PFAS, please visit the 
following websites

• EPA PFAS Action Plan - https://www.epa.gov/pfas/epas-pfas-action-plan
• EPA PFAS Research - https://www.epa.gov/chemical-research/research-and-

polyfluoroalkyl-substances-pfas
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https://www.epa.gov/pfas/epas-pfas-action-plan
https://www.epa.gov/chemical-research/research-and-polyfluoroalkyl-substances-pfas


Contact

Lara Phelps
Director
Air Methods and Characterization Division 
Center for Environmental Measurement and Modeling 
US EPA Office of Research and Development 
919-541-5544
Phelps.Lara@epa.gov
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The views expressed in this presentation are those of the individual author and 
do not necessarily reflect the views and policies of the US EPA.

mailto:Phelps.Lara@epa.gov
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