Update on Next Generation Air Monitoring Research at EPA

NACAA Joint Permitting and Enforcement Workshop

Chicago, IL

December 10, 2014

The Changing Paradigm of Air Monitoring

Snyder et al (Oct 2013) Environmental Science & Technology 2013 47 (20), 11369-11377 DOI: 10.1021/es4022602

ORD NGAM R&D has been a rapidly moving area

FY12 Mobile system development and application ASAP workshop Sensors Evaluation and Collaboration **FY13** Regions workshop Short-term sensor field tests (DISCOVER-Data visualization AQ, AIRS, roadside, wildfire, fenceline) support: RETIGO Designing/building autonomous Mobile system Workshops systems: Village Green Project, Sdevelopment and Pod application Performance testing Sensor system build Sensor data tools FY14 Mobile monitoring systems Air sensors workshop **Citizen Science Toolkit** Short-term sensor field tests (DISCOVER-

Short-term sensor field tests (DISCOVER-AQ, AIRS, roadside, wildfire, fenceline) Sensor network intelligent emissions locator tool (SENTINEL)

Long-term testing of sensors:

Regional Methods Project

Data visualization support: RETIGO Mobile

Sensor Performance Evaluation

Pollutant	Laboratory controlled test	Short-term field test	Long-term field test
PM	n/a	Near-road, ambient (2013-2014)	Regional methods (2014-2016)
Ozone	Completed (2013)	DISCOVER-AQ (2013- 2014)	Regional methods (2014-2015)
Nitrogen dioxide	Completed (2013)	DISCOVER-AQ (2013- 2014)	Regional methods (2014-2015)
VOCs	Ongoing	Near-road, ambient (2013-2014)	Regional methods (2014-2015)
Carbon monoxide	Ongoing	DISCOVER-AQ (2014) Forest fire study (2014)	Regional methods (2014-2015)
Sulfur dioxide		DISCOVER-AQ (2014)	

Example Results from Laboratory Evaluation:

Ozone

Example: Cairpol CairClip sensor

Source: EPA Sensor Evaluation Report EPA 600/R-14/143 | May 2014

Example Field Test Results

DISCOVER-AQ Study Houston, TX (Sept. 2013)

- Citizen science: small NO₂/O₃ and NO₂ sensors deployed at 7 schools
- Sensor data compared to reference analyzer data
- Low-cost sensors performed well

CairClip Sensor

Sensor Data from Schools

- Collaborative evaluation/validation of low-cost volatile organic compound passive sampling methods (FY13 Project)
 – Multi-Region Project (R8 lead, R3, R5, and R6)
- Field evaluation of lower cost, continuous measurement of air pollutants (FY 14 Project)
 - Multi-Region Project (R4 lead, R1, R5, and R8)
 - Community Air Sensor Network (CAIRSENSE) Project

Air Sensor Citizen Science Toolbox

- The Toolbox provides information to help citizens more effectively and accurately collect air quality data in their community, including information on;
 - Sampling methodologies
 - Generalized calibration/validation approaches
 - Measurement methods options
 - Data interpretation guidelines
 - Education and outreach
 - Low cost sensor performance information
- Available Resources include
 - Air Sensor Guidebook
 - Sensor Evaluation Reports
 - EPA Presentation: Sensor Technology
 - Citizen Science Funding Resource Guide

http://www.epa.gov/heasd/airsensortoolbox/

Village Green Project

Village Green Project Air instruments (PM, ozone), power system and communications components stored securely behind bench.

Village Green Evaluation

Village Green Expansion through the EPA E-Enterprise Program

11a, 6A 30046 900 808-288-7218

time environmental data to at least two communities.

New back-end support by AirNow, with development underway to support high time-resolution data.

Mobile System Development and Application

Sensor Networks In-plant and Along Facility Fence Line

Portable/Solar Powered System

DISCOVER-AQ

- How can ambient air quality be reliably informed using non-traditional approaches, such as satellite remote sensing?
- Collaboration with NASA to explore temporal and spatial relationships between column and surface measurements at locations with differing air quality.
 - Maryland, July 2011
 - California, January 2013
 - Texas, September 2013
 - Colorado, July 2014
- Unprecedented 3-dimensional characterization of pollutants and precursors.
 - Result is an expansive database of satellite, aircraft, ground-based measurements for gaseous air pollutants (i.e., NO₂, NO_y, O₃, ...) and particulate matter over urban areas with persistent air quality problems – final data in publicly accessible archive within 6 months.
- EPA research is being use to inform:
 - Federal Reference (FRM) and Equivalent (FEM) methods for NAAQS compliance
 - Value of new monitoring approaches (in-situ, small sensors, and remote sensing)
 - Evaluation and improvements for Community Multiscale Air Quality (CMAQ) fine-scale modeling

ORD's DISCOVER-AQ Field Campaign Objectives

	DISCOVER-AQ Field Mission Locations and Timeframes				
	Baltimore, MD July 2011	San Joaquin Valley, CA Jan-Feb, 2013	Houston, TX Sep 2013	Denver, CO Jul-Aug, 2014	
Federal Reference Methods (FRM)/Federal Equivalent Methods (FEM)					
Ozone – ambient evaluation of new FRM for NAAQS					
NO ₂ – ambient evaluation of new direct measurement methods for FEM					
NO_y – ambient evaluation of method compared to NOx for NO_x /SO _x secondary standard					
Remote Sensing Methods					
Evaluation of column-to-surface measurements (NO ₂ , AOD/PM _{2.5})					
Evaluation of aerosol lidar (ceilometer) for continuous mixing heights in support of PAMS					
Small Sensor Technology					
Evaluation with collocated FRM/FEM measurements					
Understand vertical distribution of pollutants					
Citizen science and educational outreach activities					

From DISCOVER-AQ to TEMPO

- First geostationary satellite dedicated to air quality applications
- Selected in 2012 as NASA's first Earth Venture Instrument with anticipated launch in 2018
- To provide hourly daylight observations to capture rapidly varying emissions & chemistry important for air quality
- Potential air quality applications include:
 - Air quality concentrations
 - Emissions Inventory
 - Air quality model evaluation
 - Global and regional transport
 - Atmospheric processes/chemistry

Summary

- The emergence of Next Generation Air Monitoring (NGAM) technologies presents new opportunities and challenges
 - Opportunity to enhance exposure assessment to better protect public health
 - Challenge in understanding data quality and interpretation
- The US EPA is working to address challenges to promote the responsible and reliable use of these technologies, while also exploring new applications to support federal, state, local, and community-level air quality management activities, including potential applications for permitting and enforcement.