Climate implications of natural gas operations

Ramón Alvarez, Ph.D. 1 October 2012

Finding the ways that work

Power plant CO₂ emissions...

Coal

Natural Gas

Power plant emissions...aren't whole story

Source: Adapted from Jaramillo et al., (2007) EST 41, 6290

Greater focus needed on methane leakage from natural gas infrastructure

Ramón A. Alvarez^{a,1}, Stephen W. Pacala^{b,1}, James J. Winebrake^c, William L. Chameides^d, and Steven P. Hamburg^e

Proceedings of the National Academy of Sciences USA (April 24, 2012) 109: 6435-6440 (doi:10.1073/pnas.1202407109)

Limitations of Global Warming Potential

GWPs established to compare the radiative forcing of emission *pulses* at a single point in time after emission (e.g., 20 or 100 years)

Obscures time dimension

Not suitable for emission *streams* of *multiple* pollutants

• "CO₂e" faces same limitations

"Technology Warming Potential" (TWP)

$$\text{TWP}(t) = \frac{\frac{L}{L_{\text{REF}}} E_{1,\text{CH}_{4}} \text{TRF}_{\text{CH}_{4}}(t) + E_{1,\text{CO}_{2}} \text{TRF}_{\text{CO}_{2}}(t)}{E_{2,\text{CH}_{4}} \text{TRF}_{\text{CH}_{4}}(t) + E_{2,\text{CO}_{2}} \text{TRF}_{\text{CO}_{2}}(t)}.$$

- E's assumed to be constant; a more general formulation could be employed to reflect technology improvements over time
- $L_{REF} = 2.1\%$ for Power Plant case; 3.0% for transportation cases

"Technology Warming Potential" (TWP)

$$\text{TWP}(t) = \frac{\frac{L}{L_{\text{REF}}} E_{1,\text{CH}_{4}} \text{TRF}_{\text{CH}_{4}}(t) + E_{1,\text{CO}_{2}} \text{TRF}_{\text{CO}_{2}}(t)}{E_{2,\text{CH}_{4}} \text{TRF}_{\text{CH}_{4}}(t) + E_{2,\text{CO}_{2}} \text{TRF}_{\text{CO}_{2}}(t)}.$$

- E's assumed to be constant; a more general formulation could be employed to reflect technology improvements over time
- $L_{REF} = 2.1\%$ for Power Plant case; 3.0% for transportation cases

Case	$TRF_{CH_4}(t)$	$TRF_{CO_2}(t)$
Pulse TWP	$RE\{\tau_M(1-e^{-t/\tau_M})\}$	$a_0t + \sum_{i=1}^3 a_i \tau_i (1 - e^{-t/\tau_i})$
Service Life TWP for $t \leq AMAX$	$RE\{\tau_M t - \tau_M^2(1 - e^{-t/\tau_M})\}$	$a_0 \frac{t^2}{2} + \sum_{i=1}^3 a_i (\tau_i t - \tau_i^2 (1 - e^{-t/\tau_i}))$
Service Life TWP for $t > AMAX$	$RE\{\tau_{M}AMAX - \tau_{M}^{2}e^{-t/\tau_{M}}(e^{AMAX/\tau_{M}} - 1)\}$	$a_0[AMAX t - \frac{AMAX^2}{2}] + \sum_{i=1}^3 a_i (\tau_i AMAX - \tau_i^2 e^{-t/\tau_i} (e^{AMAX/\tau_i} - 1))$
Fleet Conversion TWP	$RE\{\tau_M t - \tau_M^2(1 - e^{-t/\tau_M})\}$	$a_0 \frac{t^2}{2} + \sum_{i=1}^3 a_i (\tau_i t - \tau_i^2 (1 - e^{-t/\tau_i}))$

RE in these formulas is the radiative efficiency of CH₄ relative to CO₂ and equals 102.

Greater focus needed on methane leakage from natural gas infrastructure

Ramón A. Alvarez^{a,1}, Stephen W. Pacala^{b,1}, James J. Winebrake^c, William L. Chameides^d, and Steven P. Hamburg^e

Proceedings of the National Academy of Sciences USA (April 24, 2012) 109: 6435-6440 (doi:10.1073/pnas.1202407109)

Leak rate affects time to climate benefits

What it takes to avoid climate damages

Fleet Conversion
Service-Life
Pulse

Data Gaps/Uncertainties

Methane emissions across fuel cycle Effects of methane on climate Alternative climate metrics Emissions of other pollutants Climate implications Air quality benefits Efficiency of NGVs

Conclusions

Improved science and data are needed to quantify CH₄ leakage

Reductions in CH₄ leakage are needed to maximize the climate benefits of natural gas

Cutting CH₄ leakage from 2.8% down to 1% produces more than twice the climate benefit in the short term as closing down 40% of the nation's coal plants and replacing with natural gas zero-emissions sources; significant benefits persist out to 100 years.

EDF's CH₄ Emissions Field Studies

