

Today's Talk

- Electric Power Market Snapshot
- Background on JISEA Study
- · Electric Power Futures
 - Baseline
 - Coal Retirements
 - Clean Energy Standard
 - NG Supply: Social License to Operate Costs

Background on Study

- Multi-client sponsor group composed on natural gas producers, utilities, transmission companies, investors, researchers, and environmental NGO
- Scoping workshop in Spring 2011 prioritized research questions
- Work began in Summer 2011 with 3 research thrusts:
 - Lifecycle GHG attributes of shale gas (NREL)
 - Regulatory and best management practice trends in different regions (CU School of Law; CSU Engineering; CSM; Stanford)
 - Modeling of various power sector futures using ReEDS (NREL)
- Study to be released next month

Regional Energy Deployment Systems (ReEDS)

- Capacity expansion & dispatch for the contiguous US electricity sector including transmission & all major generator types
- Minimize total system cost (20 year net present value)
 - All constraints (e.g. balance load, planning & operating reserves, etc.) must be satisfied
 - o Linear program (w/ non-linear statistical calculations for variability)
 - Sequential optimization (2-year investment period 2010-2050)
- Multi-regional (356 wind/solar resource regions, 134 BAs)
 - o regional resource characterization
 - o variability of wind/solar
 - o transmission capacity expansion
- Temporal Resolution
 - o 17 timeslices in each year
 - o each season = 1 typical day = 4 timeslices
 - 1 summer peak timeslice

Power Sector NG Consumption and Price

- In the Baseline scenario, power sector NG consumption nearly triples over the 40-year period, while NG prices double
- In low-EUR scenario, power sector NG consumption doubles by 2050, while NG prices are \$1-\$1.50/MMBtu higher than the Mid-EUR Baseline
- With low demand, power sector NG consumption grows slowly until 2030, then accelerates given age-based coal and nuclear retirements
- Under Low-Demand growth, NG prices remain <\$6/MMBtu for the next decade, and <\$8/MMBtu for most years

JISEA

- Even with standard load growth (~1%/year), power sector CO₂ (combustion-only) emissions are nearly flat over time due to fuel switching from coal to NG (+RE)
- Low-Demand reduces power sector CO₂ emissions by 250 MMTons/year in 2030 and 630 MMTons/year in 2050. Cumulative (2011-2050) reductions exceed 10 Gtons CO₂.
- Electricity prices (in real dollars) increase over time for all baseline scenarios, primarily
 as a result of load growth, coal and nuclear capacity retirements, and corresponding
 reliance on natural gas.
- Demand growth has a bigger influence on electricity price trajectories than EUR

JISEA

Coal Scenarios Motivation: EPA regulations (CSAPR, MATS, Communitive Retired Capacity (MW) Communities Capacity (MW) Coal Retirements 316(b), CCR) accelerate motivation to retire oldest, most inefficient plants (coal + OGS); NSPS discourages installations of new pulverized (non-CCS) coal plants Two scenarios evaluated "Coal Retire" assumes ~80 GW retired by 2025 (Baseline assumes ~30 GW retired by 2010 2020 2030 NG-CC NG-CT ---oil gas steam "No New Coal" assumes no new (non-CCS) 200,000 Cumulative Retired Capacity (MM) 000,081 000,082 000,084 coal capacity

ReEDS' standard treatment of retirements is based on plant lifetimes for all plant types; usage-based

retirement is also considered for coal

Preliminary Material - Do Not Copy or Distribut

2040

2040

2010

2020

2030

2050

2050

- Near-term coal retirements can have an effect on near-term electricity prices and CO2 emissions, but little long-term effect
- Cumulative (2011-2050) avoided emissions from EPA regulation-driven retirements are ~3300 MMTons CO2
- Without new (non-CCS) coal, annual avoided emissions in 2050 are ~160 MMTons CO2 and cumulative (2011-2050) avoided emissions are ~1100 MMTons CO2. These emission savings require little incremental electricity price increases (<\$3/MWh in 2050)

Preliminary Material - Do Not Copy or Distribute

13

Clean Electricity Standard Scenarios

- Clean Electricity Standard
 - 80% clean electricity by 2035, 95% by 2050
 - Crediting: 100% for nuclear/RE, 50% for NG-CC, 95% for NG-CCS, 90% for Coal-CCS, 0% all others
- · Three CES scenarios:
 - High EUR
 - High EUR, No CCS
 - Low EUR

Clean Electricity Standard Scenarios

- Under a CES, sustained power sector NG consumption growth depends on the viability of CCS
- With Low-EUR, NG consumption grows slowly (compared to Baseline); RE, coal-CCS, and nuclear are much bigger contributors
- With High-EUR, NG prices remain relatively low even with significant growth in consumption

JISEA

- CES can lead to deep cuts in carbon emissions (upstream and downstream emissions should also be considered)
- · Abundant low cost NG (High-EUR) can help lower the cost of meeting a CES
- Availability of a greater number of clean technology options (e.g. CCS and RE) can lower the cost of meeting a CES

- RE technologies can contribute significantly to meeting a CES
- Among the CES scenarios, non-hydro RE annual electricity reaches 35%-43% in 2036 and 51%-69% in 2050
- With increased RE deployment, transmission needs are increased and operational challenges (e.g. curtailment) are increased

JISEA

NG Supply Variation Scenario

- NG supply-demand sensitivity scenarios
 - Raise supply curve by \$0.5/MMBtu increment up to +\$2/MMBtu for each year starting in 2012
 - Motivation: Explore how additional supplier costs would effect power sector evolution (e.g. costs of best practices, regulations, social license to operate: well set-backs, greener frack-fluids, water recycling, green completions, well completions/monitoring, etc.)

Preliminary Conclusions

- Recent coal-to-gas fuel switching has cut U.S. power sector CO2 emissions by approximately 13%
- Future power sector evolution is sensitive to assumptions of EUR, price, technology and policy.
- Coal retirements are largely replaced with natural gas and, to a lesser extent, wind
- CES: without CCS, NG demand peaks around 2030
- Power sector NG demand in the SLOC case doubles by 2050 when prices are +\$1/MMBtu above baseline (compared to 2.5x increase in baseline)

