Today's Talk - Electric Power Market Snapshot - Background on JISEA Study - · Electric Power Futures - Baseline - Coal Retirements - Clean Energy Standard - NG Supply: Social License to Operate Costs ### Background on Study - Multi-client sponsor group composed on natural gas producers, utilities, transmission companies, investors, researchers, and environmental NGO - Scoping workshop in Spring 2011 prioritized research questions - Work began in Summer 2011 with 3 research thrusts: - Lifecycle GHG attributes of shale gas (NREL) - Regulatory and best management practice trends in different regions (CU School of Law; CSU Engineering; CSM; Stanford) - Modeling of various power sector futures using ReEDS (NREL) - Study to be released next month ### Regional Energy Deployment Systems (ReEDS) - Capacity expansion & dispatch for the contiguous US electricity sector including transmission & all major generator types - Minimize total system cost (20 year net present value) - All constraints (e.g. balance load, planning & operating reserves, etc.) must be satisfied - o Linear program (w/ non-linear statistical calculations for variability) - Sequential optimization (2-year investment period 2010-2050) - Multi-regional (356 wind/solar resource regions, 134 BAs) - o regional resource characterization - o variability of wind/solar - o transmission capacity expansion - Temporal Resolution - o 17 timeslices in each year - o each season = 1 typical day = 4 timeslices - 1 summer peak timeslice ### Power Sector NG Consumption and Price - In the Baseline scenario, power sector NG consumption nearly triples over the 40-year period, while NG prices double - In low-EUR scenario, power sector NG consumption doubles by 2050, while NG prices are \$1-\$1.50/MMBtu higher than the Mid-EUR Baseline - With low demand, power sector NG consumption grows slowly until 2030, then accelerates given age-based coal and nuclear retirements - Under Low-Demand growth, NG prices remain <\$6/MMBtu for the next decade, and <\$8/MMBtu for most years JISEA - Even with standard load growth (~1%/year), power sector CO₂ (combustion-only) emissions are nearly flat over time due to fuel switching from coal to NG (+RE) - Low-Demand reduces power sector CO₂ emissions by 250 MMTons/year in 2030 and 630 MMTons/year in 2050. Cumulative (2011-2050) reductions exceed 10 Gtons CO₂. - Electricity prices (in real dollars) increase over time for all baseline scenarios, primarily as a result of load growth, coal and nuclear capacity retirements, and corresponding reliance on natural gas. - Demand growth has a bigger influence on electricity price trajectories than EUR JISEA #### **Coal Scenarios** Motivation: EPA regulations (CSAPR, MATS, Communitive Retired Capacity (MW) Communities Capacity (MW) Coal Retirements 316(b), CCR) accelerate motivation to retire oldest, most inefficient plants (coal + OGS); NSPS discourages installations of new pulverized (non-CCS) coal plants Two scenarios evaluated "Coal Retire" assumes ~80 GW retired by 2025 (Baseline assumes ~30 GW retired by 2010 2020 2030 NG-CC NG-CT ---oil gas steam "No New Coal" assumes no new (non-CCS) 200,000 Cumulative Retired Capacity (MM) 000,081 000,082 000,084 coal capacity ReEDS' standard treatment of retirements is based on plant lifetimes for all plant types; usage-based retirement is also considered for coal Preliminary Material - Do Not Copy or Distribut 2040 2040 2010 2020 2030 2050 2050 - Near-term coal retirements can have an effect on near-term electricity prices and CO2 emissions, but little long-term effect - Cumulative (2011-2050) avoided emissions from EPA regulation-driven retirements are ~3300 MMTons CO2 - Without new (non-CCS) coal, annual avoided emissions in 2050 are ~160 MMTons CO2 and cumulative (2011-2050) avoided emissions are ~1100 MMTons CO2. These emission savings require little incremental electricity price increases (<\$3/MWh in 2050) Preliminary Material - Do Not Copy or Distribute 13 # Clean Electricity Standard Scenarios - Clean Electricity Standard - 80% clean electricity by 2035, 95% by 2050 - Crediting: 100% for nuclear/RE, 50% for NG-CC, 95% for NG-CCS, 90% for Coal-CCS, 0% all others - · Three CES scenarios: - High EUR - High EUR, No CCS - Low EUR ### Clean Electricity Standard Scenarios - Under a CES, sustained power sector NG consumption growth depends on the viability of CCS - With Low-EUR, NG consumption grows slowly (compared to Baseline); RE, coal-CCS, and nuclear are much bigger contributors - With High-EUR, NG prices remain relatively low even with significant growth in consumption JISEA - CES can lead to deep cuts in carbon emissions (upstream and downstream emissions should also be considered) - · Abundant low cost NG (High-EUR) can help lower the cost of meeting a CES - Availability of a greater number of clean technology options (e.g. CCS and RE) can lower the cost of meeting a CES - RE technologies can contribute significantly to meeting a CES - Among the CES scenarios, non-hydro RE annual electricity reaches 35%-43% in 2036 and 51%-69% in 2050 - With increased RE deployment, transmission needs are increased and operational challenges (e.g. curtailment) are increased JISEA ### NG Supply Variation Scenario - NG supply-demand sensitivity scenarios - Raise supply curve by \$0.5/MMBtu increment up to +\$2/MMBtu for each year starting in 2012 - Motivation: Explore how additional supplier costs would effect power sector evolution (e.g. costs of best practices, regulations, social license to operate: well set-backs, greener frack-fluids, water recycling, green completions, well completions/monitoring, etc.) ## **Preliminary Conclusions** - Recent coal-to-gas fuel switching has cut U.S. power sector CO2 emissions by approximately 13% - Future power sector evolution is sensitive to assumptions of EUR, price, technology and policy. - Coal retirements are largely replaced with natural gas and, to a lesser extent, wind - CES: without CCS, NG demand peaks around 2030 - Power sector NG demand in the SLOC case doubles by 2050 when prices are +\$1/MMBtu above baseline (compared to 2.5x increase in baseline)