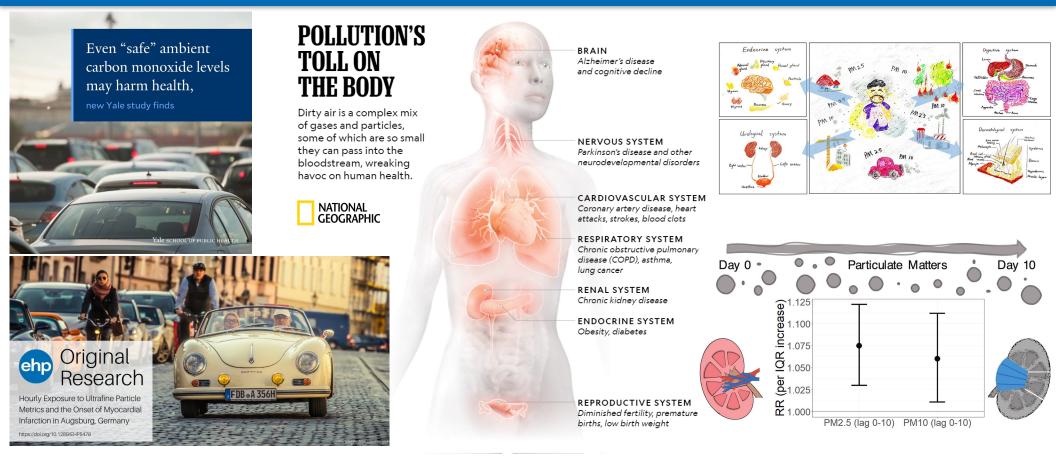
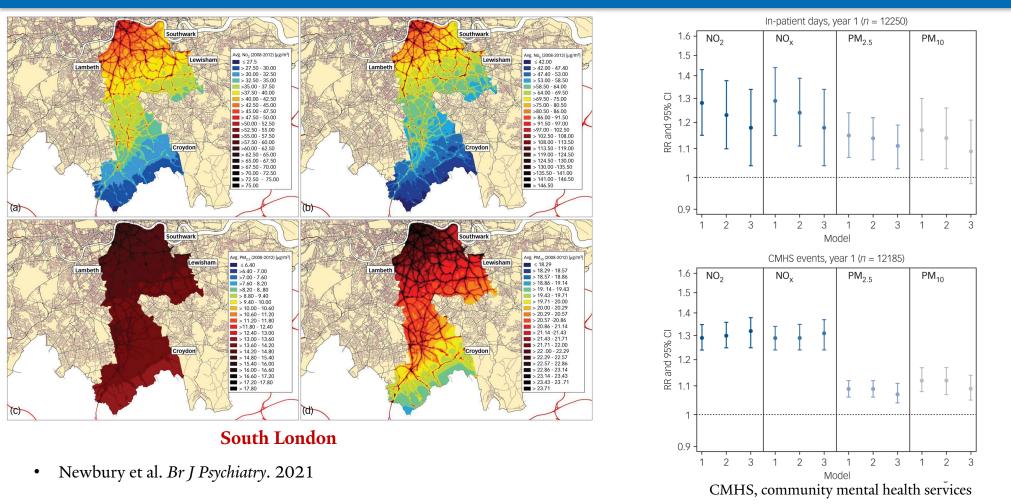
Yale SCHOOL OF PUBLIC HEALTH Center on Climate Change and Health

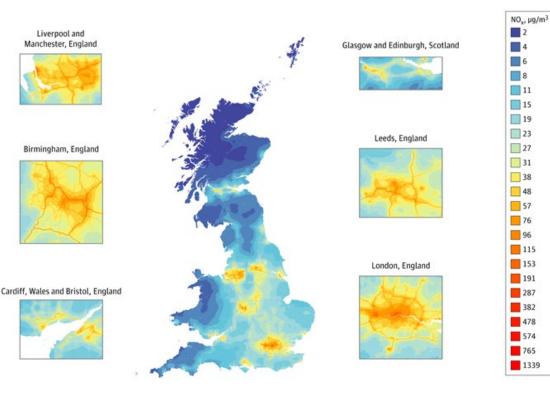

Short-term Air Pollution Exposure and Mental Health

Kai Chen, PhD

Assistant Professor of Epidemiology Yale School of Public Health, Yale Center on Climate Change and Health


NACAA Fall Meeting, October 21, 2021

Health effects of air pollution


• Chen, et al. Environ Health Perspect, 2020; Lancet Planetary Health, 2021; Chu, et al. Environ Pollut, 2021; Wang, et al. Environ Pollut, 2020.

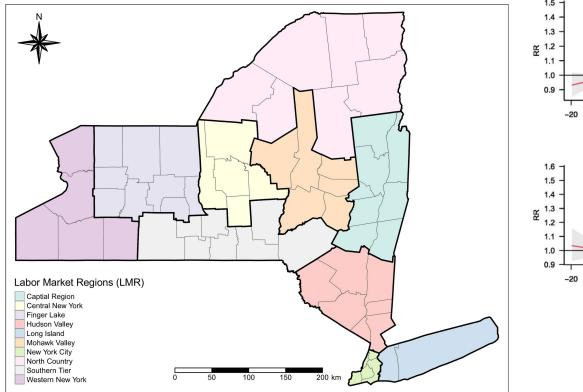
Long-term air pollution exposure and mental health service use among people recently diagnosed with psychotic and mood disorders.

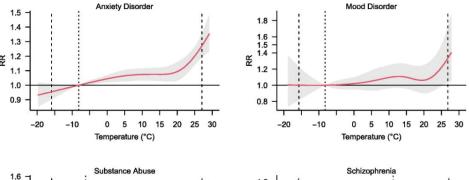
Air pollution in childhood and adolescence associated with the development of psychopathology at the transition to adulthood

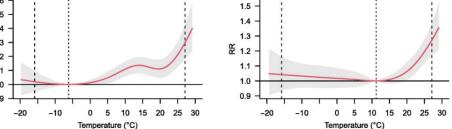
Mean Annual NOx averaged across 2004-2012

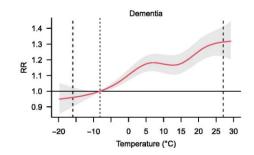
	Air pollution exposure measured continuously and scaled to the interquartile range				
	NO _x PM _{2.5}				
Disorder	b (95% CI)	P value	b (95% CI)	P value	
General psychopathology	1.40 (0.41 to 2.38)	.005	0.45 (-0.26 to 1.15)	.22	
Internalizing	1.07 (0.10 to 2.04)	.03	0.25 (-0.47 to 0.96)	.50	
Externalizing	1.42 (0.53 to 2.31)	.002	0.64 (0.02 to 1.26)	.04	
Thought disorder	1.54 (0.50 to 2.57)	.004	0.51 (-0.23 to 1.24)	.18	

• Reuben et al. JAMA Network Open. 2021

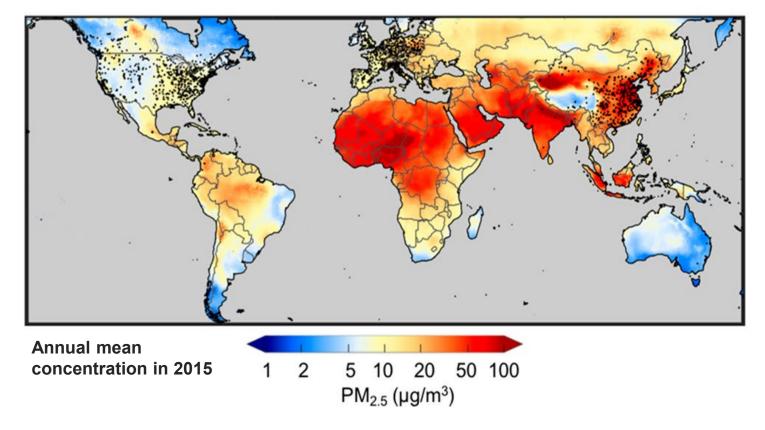

Less is known about how short-term air pollution impacts the utilization of general mental health services


Study ID	Risk of completed suic	ide	RR (95% C.I.) per 10μg/m ³ PM ₁₀	% Weight
Lag 0-1 (days)				
Bakian et al. 2015 (n=1,546)			1.01 (0.96, 1.05)	12.24
Casas et al. 2017 (n=21,231)	•		1.00 (0.98, 1.01)	49.36
Lin et al. 2016 (n=1,550)	•	_	1.02 (1.00, 1.04)	38.40
Overall (I ² =44.6%, p=0.164 for H ₀ of ne	o heterogeneity)		1.01 (0.99, 1.03)	100.00
Lag 0-2 (days)				
Bakian et al. 2015 (n=1546)			1.02 (0.97, 1.08)	7.82
Casas et al. 2017 (n=21,231)	.		1.00 (0.99, 1.02)	37.99
Kim et al. 2010 (n=4,341)			1.03 (1.01, 1.06)	26.48
Lin et al. 2016 (n=1,550)			1.02 (1.00, 1.05)	27.71
Overall (I ² =43.5%, p=0.150 for H ₀ of n	o heterogeneity)		1.02 (1.00, 1.03)	100.00
Note: weights are from random effects	s analysis			
0.925	1.0	1.08	RR of completed	
0.525				e per 10µg/m
maits at al Empiren Health Dermant	010		increase	in short-terr
waite et al. Environ Health Perspect. 2	019		Р	M ₁₀ exposur

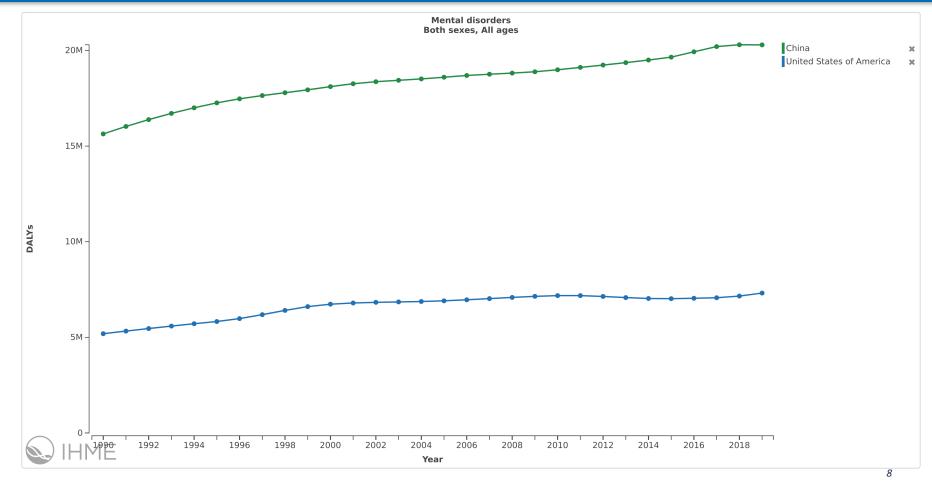

Brai

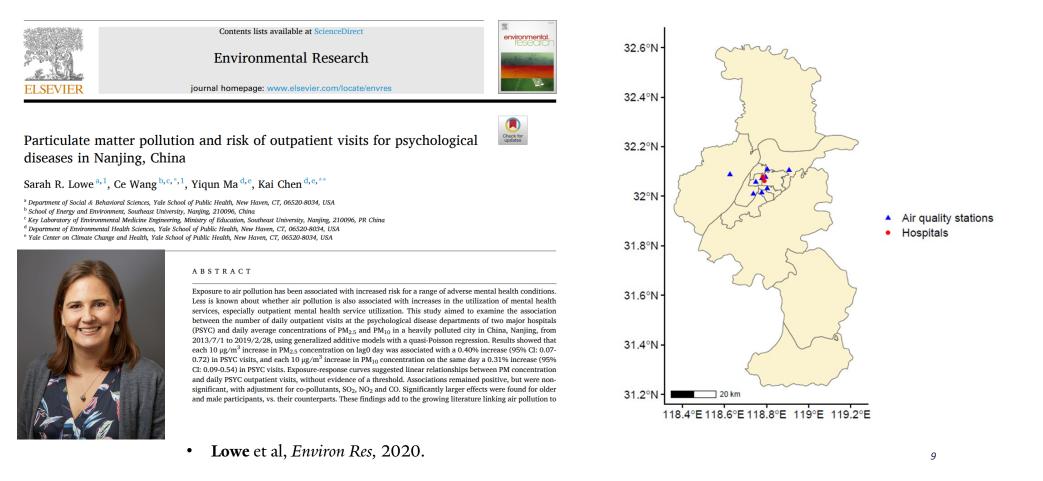

•

Our recent analysis shows that short-term heat exposure increased ER visits related to mental disorders



• Yoo et al. Sci Total Environ. 2021

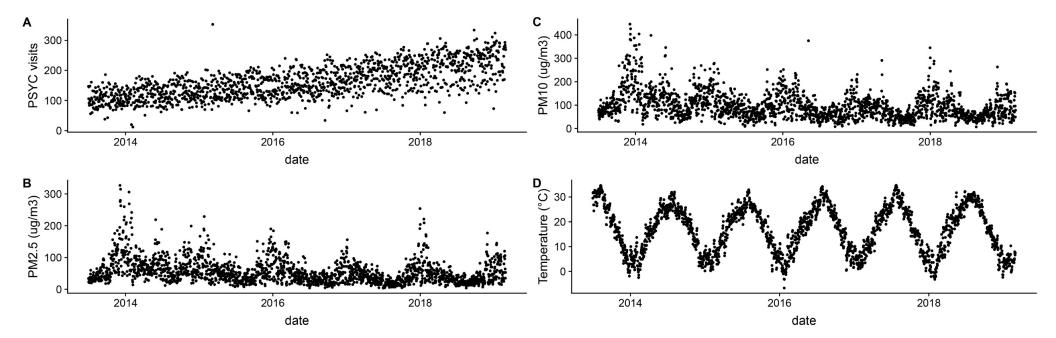

China is among the highest level of outdoor air pollution


7

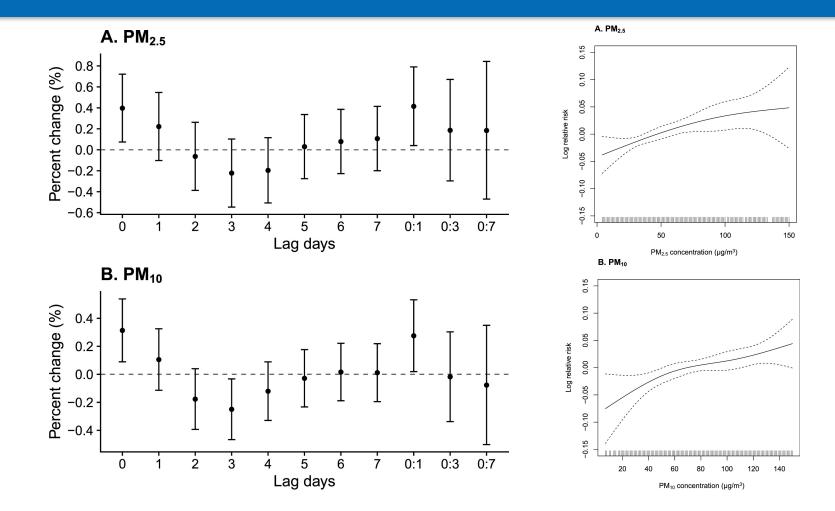
[•] Hammer et al, *Environ. Sci. Technol*, 2020

The prevalence of most mental disorders has also been increasing in the past 30 years in China

Study 1: Daily particulate matter air pollution and mental health outpatient visits in Nanjing, China


Heavy air pollution in Nanjing City

July 1st, 2013 to Feb. 28th, 2019	$\text{Mean} \pm \text{SD}$				
PSYC (visits)					
Total	$160.7 \pm \textbf{54.2}$				
5–64 years	130.0 ± 50.0				
65+ years	$\textbf{27.1} \pm \textbf{9.7}$				
Male	65.1 ± 22.1				
Female	$\textbf{92.8} \pm \textbf{36.8}$				
Warm season	$\textbf{159.9} \pm \textbf{52.3}$				
Cold season	$161.4 \pm \textbf{56.1}$				
Air pollutants					
$PM_{2.5} (\mu g/m^3)$	$\textbf{54.9} \pm \textbf{39.3}$				
$PM_{10} (\mu g/m^3)$	96.7 ± 58.6				
$SO_2 (\mu g/m^3)$	$\textbf{18.6} \pm \textbf{12.1}$				
$NO_2 (\mu g/m^3)$	$\textbf{48.1} \pm \textbf{20.3}$				
$CO (mg/m^3)$	$\textbf{0.9} \pm \textbf{0.4}$				
Meteorological factors					
Temperature (°C)	16.7 ± 9.3				
RH (%)	$\textbf{72.8} \pm \textbf{13.8}$				


A time-series approach to evaluate the association between short-term air pollution exposure and health

• We applied a generalized additive model with a quasi-Poisson regression to evaluate the association between PM concentrations and PSYC outpatient visits, while controlling confounding by underlying time trends, temperature, relative humidity, and the day of week effect.

[•] Lowe et al, *Environ Res*, 2020.

Acute, linear effects for short-term PM exposure on PSYC

Effect modification by age, sex, and season

Potential effect modification by season, sex, and age groups on the association of outpatient visits for psychological diseases (PSYC) with $PM_{2.5}$ and PM_{10} .

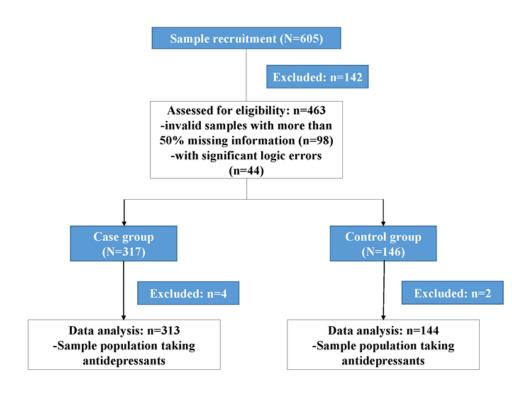
PM	Potential effect modifier	Percent change (95% CI)	<i>p</i> value ^a
PM _{2.5}	Age		
	5–64	0.10 (-0.18, 0.39)	< 0.001
	65+	1.75 (1.26, 2.25)	
	Sex		
	Male	0.80 (0.45, 1.14)	0.001
	Female	0.12 (-0.19, 0.43)	
	Season		
	Warm	0.33 (-0.39, 1.06)	0.821
	Cold	0.42 (0.07, 0.78)	
PM ₁₀	Age		
	5-64	0.10 (-0.10, 0.30)	< 0.001
	65+	1.27 (0.94, 1.61)	
	Sex		
	Male	0.61 (0.37, 0.85)	< 0.001
	Female	0.10 (-0.11, 0.31)	
	Season		
	Warm	0.05 (-0.37, 0.48)	0.155
	Cold	0.40 (0.15, 0.65)	

But PM moderate to high correlations with other pollutants

Table S1. Spearman correlation coefficients between concentrations of air pollutants and meteorological variables in Nanjing from July 1, 2013 to February 28, 2019.

	PM _{2.5}	PM_{10}	SO_2	NO_2	СО	O_3	Temperature	RH
PM _{2.5}	1							
PM_{10}	0.92	1						
SO_2	0.58	0.71	1					
NO_2	0.68	0.74	0.64	1				
CO	0.66	0.62	0.56	0.59	1			
O_3	-0.13	-0.04	0.03	-0.18	-0.14	1		
Temperature	-0.36	-0.32	-0.17	-0.41	-0.26	0.55	1	
RH	-0.17	-0.41	-0.57	-0.32	-0.1	-0.32	0.12	1

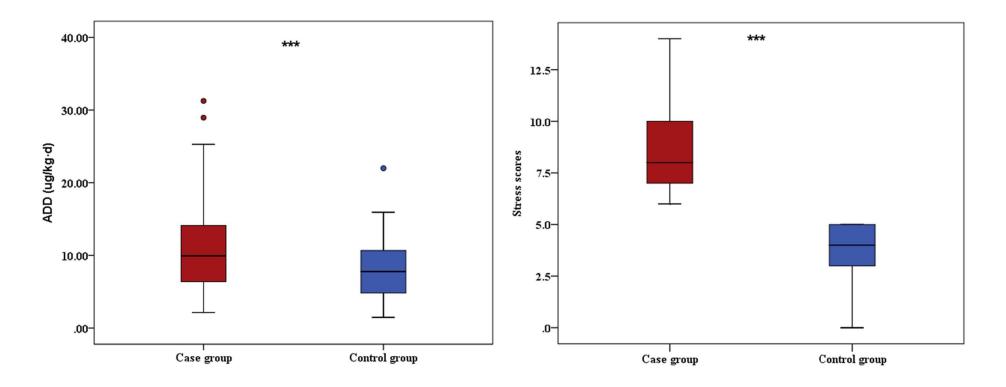
Two-pollutant model shows decreased risk estimates, calling for future study on air pollution mixture


Percent changes (%) and 95% confidence intervals (CI) of outpatient visits for psychological diseases (PSYC) for a 10 μ g/m³ increase in PM_{2.5} and PM₁₀, with and without adjustment for co-pollutants.

РМ	Co-pollutant	Percent change (95% CI)	<i>p</i> value ^a
PM _{2.5}	_	0.40 (0.07, 0.72)	_
	$+SO_2$	0.28 (-0.11, 0.67)	0.645
	$+NO_2$	0.22 (-0.19, 0.63)	0.497
	+CO	0.26 (-0.21, 0.72)	0.628
PM ₁₀	-	0.31 (0.09, 0.54)	_
	+CO	0.25 (-0.06, 0.56)	0.747

^a Significance test of the difference in estimated changes between models with and without adjustment for co-pollutants.

Lowe et al, Environ Res, 2020.

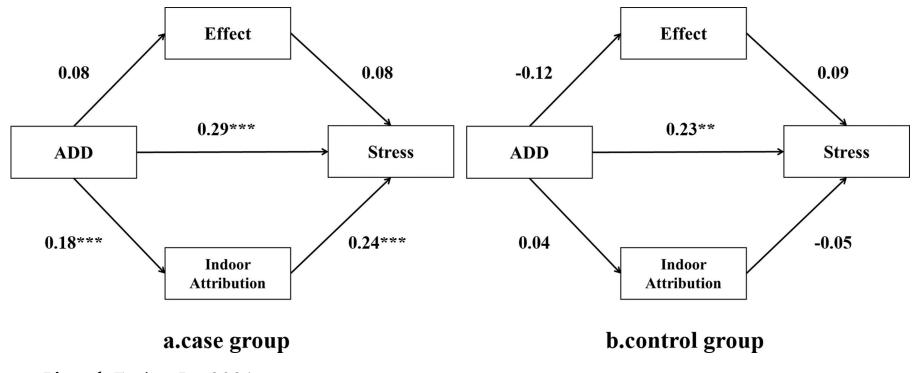

Study 2: Daily PM2.5 exposure and the mental stress of pregnant women in Nanjing, China

• Li, et al. Environ Int, 2021.

- Pregnant women 20–44 years old in the second trimester (22–24 weeks) were recruited from the Nanjing Maternal and Child Health Care Hospital during January 2018 - December 2018.
- Participants taking antidepressants (N = 6) were excluded.
- □ Face-to-face interview questionnaire on risk perception, mental stress, **time-activities**, individual characteristics.
- Phobic anxiety scale scores using the Crown-Crisp Experiment Index:
 - Case group (score of 6 or higher)
 - Control group (score of 5 or lower)

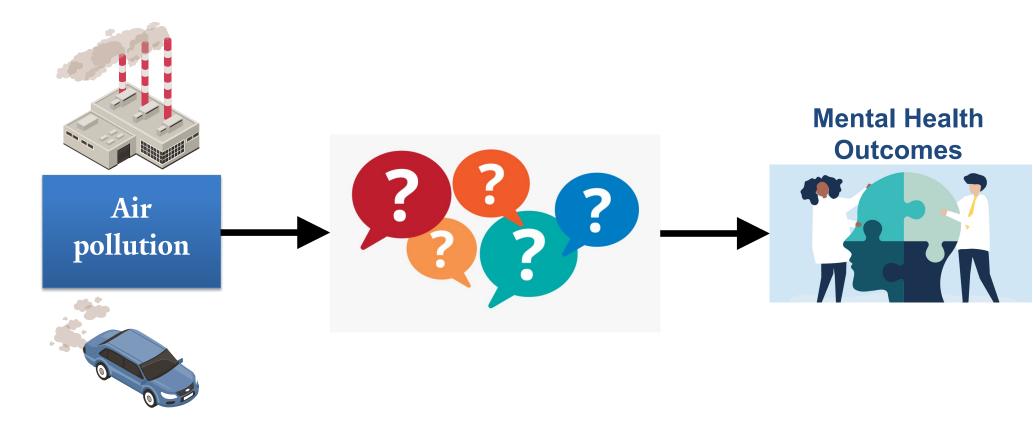
PM2.5 exposure of the case group was significantly higher compared with the control group

 $ext{ADD} = (C imes IR_1 imes EF_1/24 + C imes R imes IR_2 imes EF_2/24)/BW$


• Li, et al. Environ Int, 2021.

where ADD is the daily dose of PM_{2.5} prior to the interview (μ g/kg \cdot d);

17


PM2.5 exposure has direct effect on the mental stress of pregnant women

Odds ratio:13.76% (95 %CI: 8.26–19.53%) per unit increase in ADD

• Li, et al. Environ Int, 2021.

Potential Mechanisms: What factors might link air pollution exposure and mental health outcomes?

• Lowe et al, *Environ Res*, 2020.

Potential Mechanisms: What factors might link air pollution exposure and mental health outcomes?

Air pollution

• Lowe et al, *Environ Res*, 2020.

Biological: Oxidative and nitrosative stress; inflammation; HPA axis dysregulation

Physical health: Symptom exacerbation (e.g., asthma, COPD)

Psychosocial: Lower outdoor leisure, exercise, neighborhood social support

Mental Health Outcomes

Yale SCHOOL OF PUBLIC HEALTH Center on Climate Change and Health

Thank you! Questions?

Email: kai.chen@yale.edu

