# Responsible AI Strategy for the Environment – A Global and Multidisciplinary Approach

November 27, 2023

Lee J. Tiedrich

lee.tiedrich@duke.edu

Copyright 2023 Lee J. Tiedrich, all rights reserved



#### The Evolving AI Legal and Policy Landscape: Some Examples















































G-7 & G20

US – EU Trade & Tech Council

ISO & ITU UN

#### OECD Al Principles (May 2019)



- Inclusive growth, sustainable development and well-being
- 2 Human-centered values and fairness
- 3 Transparency and explainability
- Making Al secure, robust and safe throughout life cycle
- 5 Accountability

### Al and Climate Change: US Al Executive Order Initiatives

- Al-Enhanced Electric Grid Planning & Operations
  - Tools for Streamlining Environmental Reviews
    - Al Collaboration in Mitigating Climate Risks
    - Partnerships in AI for Science and Energy
      - Coordination Office for AI Technologies





The GPAI is a multi-stakeholder initiative consisting of 29 Members working together to advance the responsible development and use of AI, grounded in human rights, inclusion, diversity, innovation, and economic growth.

GPAI aims to **bridge the gap between theory and practice on AI** by supporting cutting-edge research and applied activities on AI-related priorities.



- Founded in 2020 with 15 Members, today GPAI has 29 Members
- 1 Secretariat hosted at OECD
- ♦ 127 Experts, 22 Observers
- 4 Expert Working Groups
  - → Responsible Al
  - → Data Governance
  - → Innovation and Commercialisation
  - → Future of Work
- 2 Expert Support Centres





#### The G7 Hiroshima Al Process (G7 Leaders Communiqué, May 20, 2023)

44

We support the **development of tools for trustworthy AI through multi-stakeholder international organizations**, and encourage the development and adoption of international technical standards in standards development organizations through multi-stakeholder processes.

We recognize the need to immediately take stock of the **opportunities and challenges of generative AI**, which is increasingly prominent across countries and sectors, and encourage international organizations such as the OECD to consider analysis on the impact of policy developments and **Global Partnership on AI (GPAI) to conduct practical projects.** 

In this respect, we task relevant ministers to establish the Hiroshima Al process, through a G7 working group, in an inclusive manner and in cooperation with the OECD and GPAI, for discussions on generative Al by the end of this year.

### **RAISE Objectives**

- 1. Develop and implement a responsible AI adoption strategy for climate action and biodiversity preservation
- 2. Work with institutional partners to anchor AI for environmental action



































### **Existing** collaborations

### PROJECT Activities





#### Climate Change and Al Report [2021]



Provides actionable recommendations as to how governments can support the responsible use of AI in the context of climate change, spanning across three primary categories:



Supporting Al applications in climate change mitigation and adaptation



Reducing Al's negative impacts on the climate



Building implementation, evaluation, and governance capabilities



#### Climate Change and Al Report [2021]



#### **Key Recommendations**





#### Climate Change and Al Report [2021] - BOOKLET OF 20 Usecases



Validating AI for power system optimization: **RTE** 

RTE'S COMPETITION SERIES PROVIDES AN INNOVATIVE PLATFORM
TO VALIDATE THE POTENTIAL OF REINFORCEMENT LEARNING TO
OPTIMIZE POWER GRIDS IN REAL TIME



Modeling urban microclimates: InFraReD

IMPROVING URBAN DESIGN BY SIMULATING THE URBAN MICROCLIMATE IN SECONDS, INSTEAD OF HOURS, THANKS TO AI



Mapping floods with Al:

The United Nations Satellite Centre

UNOSAT'S FLOODAI ENABLES HIGH-FREQUENCY FLOOD REPORTS THAT HAVE IMPROVED DISASTER RESPONSE IN ASIA AND AFRICA



Monitoring deforestation in the Amazon: MAAP

MAAP USES SATELLITE IMAGERY TO PROVIDE A REAL-TIME LOOK AT WHERE DEFORESTATION IS HAPPENING



Optimizing data center energy usage: **DeepMind** 

DEEPMIND USES AI TO INCREASE DATA CENTER COOLING SYSTEM EFFICIENCY BY APPROXIMATELY 30-40%



Reducing the footprint of recyc Fero Labs

FERO LABS USES AI TO HELP STEEL MANUFACTURERS REDUCE THE USE OF MINED INGREDIENTS BY UP TO 34%, PREVENTING AN ESTIMATED 450,000 TONS OF CO2 EMISSIONS PER YEAR.

#### **Biodiversity and AI Report [2022]**



Provides actionable recommendations for how governments, NGOs, researchers, and companies can use AI to support biodiversity conservation, broken down into the following sections:

#### Assessment of the Current Landscape

- → AI for biodiversity and biodiversity loss
- → Al for drivers of biodiversity loss
- → Al for policy action on biodiversity
- → AI for optimising action on biodiversity

Risks to Responsible Al adoption for Biodiversity

**Common Challenges** 

**Recommendations Roadmap** 



#### Biodiversity and Al Report [2022]



#### **Common Challenges**

#### Data

- Data collection in biodiversity hotspots which could be deemed to be undermining local communities' data usage rights
- Limited geographical and species spread, primarily in the Global North and with more charismatic ecosystems and species; lack of biodiversity driver data

#### **Funding**

- Most funding is also targeted at developing new technologies and startups, not at scaling-up of AI for biodiversity projects
- Philanthropic funding, the most common for AI and biodiversity projects, tends not to allow unsolicited applications, thereby limiting access to those with networks surrounding the fund.

#### **Capacity and Awareness**

 Al capacity and awareness is low across most organisations involved in conservation efforts.



#### Biodiversity and Al Report [2022]



#### **Key Recommendations**

#### Data

- Governments and industry to support biodiversity data openness and availability
- Establish an international data taskforce on drivers of biodiversity loss
- Prioritise outreach to local communities and seek to deploy privacy enhancing technologies to protect data privacy

#### **Funding**

 Governments, multilateral funds should increase funding for both applications and cross cutting digital infrastructure

#### **Capacity and Awareness**

 Develop AI for biodiversity training and specialist talent development and hold regular events to bring together the conservation and AI communities



#### Al Compute Report, in collaboration with the OECD [2022]



Aims to improve understanding of the environmental impacts of AI, and help measure and decrease AI's negative effects while enabling it to accelerate action for the good of the planet.

- → Defines Al Compute
- → Reviews existing and emerging data and measurement frameworks (direct, indirect, and dual impacts)
- → Notes measurement gaps with policy implications



# Environmental impacts of AI compute and applications should be further measured and understood

#### Direct environmental impacts AI compute resources lifecycle

| Production 🕌                                                                     | Transport 🔤                                                                                  | Operations 🔲                                                                            | End-of-life 🔼                                                                                          |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| <ul><li>Raw material extraction</li><li>Assembly</li><li>Manufacturing</li></ul> | <ul><li>Distribution</li><li>Freight transportation</li><li>Handling &amp; storage</li></ul> | <ul><li>Energy consumption</li><li>Water consumption</li><li>Carbon footprint</li></ul> | <ul><li>Collection &amp; shipping</li><li>Dismantling &amp; recycling</li><li>Waste disposal</li></ul> |

#### Indirect environmental impacts AI compute applications

| Positive impacts                                                                                                                                 | Negative impacts                                                                                                                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Beneficial sectoral applications</li> <li>Climate mitigation and adaptation</li> <li>Environmental modelling and forecasting</li> </ul> | <ul> <li>Harmful sectoral applications</li> <li>Carbon leakage (net increase in emissions)</li> <li>Consumption patterns and rebound effects</li> </ul> |  |

Sources: OECD.AI Expert Group on AI and Climate, literature review, expert interviews. Based on Berkhout and Hertin (OECD, 2001), ITU Standard ITU-T L.1410 and Kaack et. al (2022)

## Thank you!



