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Southeast Michigan
Ozone Nonattainment Area

* Monitors in Southeast Michigan (SEMI) have exceeded
O, National Ambient Air Quality Standard of 70 ppb.

* Seven counties (St. Clair, Macomb, Oakland, Livingston,
Wayne, Washtenaw, Monroe) designated as SEMI ozone
nonattainment area by U.S. EPA.

* Bump-up from “marginal” to “moderate” designation is
possible based on 2018-2020 ozone data.

* A State Implementation Plan (SIP) and ozone attainment
demonstration may be required for SEMI, if bumped up.
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Michigan-Ontario Ozone Source
Experiment (MOOSE)

* |nternational / intergovernmental collaboration:

— United States: Michigan EGLE, U.S. EPA, NASA, NSF,
U.S. Forest Service, U.S. Department of Energy

— Canada: Environment and Climate Change Canada
(ECCC), Ontario Ministry of Environment,
Conservation, and Parks (MECP)

e 2021 campaign (May 20 — Sep 30) deploys:

— Advanced ground and airborne remote sensing and
mobile real-time monitoring techniques

— Very high spatial and temporal resolution regional and

micro-scale chemical transport modeb/
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QUIC model used to simulate wind based on 3D LIDAR building morphology
Olaguer et al. (2013), J. Geophys. Res.-Atmos., 118, 11,317-11,326.
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Microscale Forward and Adjoint
Chemical Transport (MicroFACT) Model

* 3D Eulerian model simulates transport of 35
species by advection and turbulent diffusion

* Chemistry is simulated by 116 gas-phase and
5 heterogeneous reactions

* Very fine resolution (10 s, 400 m horizontal)
* Model has both forward and adjoint modes

* Can infer emissions at fine scale from MOOSE
measurements (inverse modeling)

Olaguer, E.P., Atmosphere 2021, 12, 877. https://doi.org/10.3390/atmos12070877




Chemical Mechanism: MCM vs MicroFACT
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Policy Questions

* Where does the ozone during an exceedance come from?

How critical are lake breeze effects in transporting ozone?

Is local chemistry significantly impacted by fine-scale dynamical
features? Which sources are most affected?

* Which set of ozone precursors need control?

VOC or NOx-limited? Transitional?

If VOCs, which species/sources? Are there significant under-
estimated sources?

Are primary sources of radicals (e.g., HCHO, HONO) under-
estimated? How much does this impact ozone productivity and
control strategy efficacy in models?

Does methane (CH,) contribute significantlyv



GEM-MACH 2.5-Akm Ozone Simulation
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10% VOC solvent use emission reduction
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Volatile Chemical Products

McDonald et al. (2018) found that volatile chemical
products (VCPs)—including pesticides, coatings, printing
inks, adhesives, cleaning agents, and personal care
products—now constitute half of fossil fuel VOC
emissions in industrialized cities.

Seltzer et al. (2020) predicted larger VCP emissions than
the 2017 NEI for approximately half of all U.S. counties,
with 5 % of all counties featuring increases > 60%. This
will be reflected in the 2020 NEI.
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Formaldehyde (HCHO)

Formaldehyde (HCHO) is a Volatile Organic Compound (VOC) that is
very reactive (lifetime of a few hours). Like other VOCs, it reacts with
already available hydroxyl radical (OH).

HCHO is a powerful ozone precursor due to its ability to generate
new, unrecycled radicals that fuel NO>NO, ©0,.

HCHO is also a Hazardous Air Pollutant (HAP) with both cancer and
non-cancer (e.g., airway irritation and asthma) health effects.

Secondary HCHO is the by-product of the chemical degradation of
other VOCs already in the atmosphere, including biogenic VOCs.

Primary HCHO is emitted by human activities, mostly incomplete
combustion, where HCHO/CO molar ratio is likely between 2-10%.

HCHO is likely underrepresented in official emission inventories

(Olaguer et al., J. Geophys. Res. Atmos., 119:2597-2610, 2014).



CMAQ Model Formaldehyde
versus Observations
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Formaldehyde Source Attribution

for a Texas City Refinery
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OXIDATION CATALYSIS OF NG
ENGINES

Cco Average CO HCHO ﬁ;gr:ge
Emissions Emissions Emissions

emissions
(Ib/hr) (Ib/hr) (Ib/hr) (Ib/hr)

Heat input (MMbtu/hr)

Engine 1 (oxidation

catalyst) 13 024 e
Engine 2 (oxidation
catalyst) 17 . 026 030 e
Engine 3 (oxidation 07 - 019 - 16.7
catalyst) ' ' '
Engine 4 (oxidation
catalyst) 24 04 7
Engine 5 (no catalyst) 731 71 18.1
Engine 6 (no catalyst) 6.94 74 17.1
. 7.08 72
Engine 7 (no catalyst) 7.03 75 16.8
Engine 8 (no catalyst) 7 03 69 16.9

Data from 8 4-Stroke Lean Burn NG Engines at a New Jersey natural gas processing facility; 4 of
the engines have been equipped with oxidation catalysis. The results demonstrate a 8%
reduction in CO emissions, and a 26% reduction in HCHO emissions.

After Ratzman (2018)




California Methane Survey: Landfills
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Hypothesis: Landfills Create Significant

Ozone Plumes

* Landfills emit large amounts of methane (radical extender).

* Landfills also can emit significant amounts of formaldehyde (radical
precursor) from on-site gas-to-energy conversion facilities (engines
and flares).

* Landfill activities also produce NOx and other ozone precursors,
including VOC from landfill gas.

*  The combination of these emissions result in significant ozone
plumes that may add at least 1 ppb to ozone design values in

Southeast Michigan. /
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MicroFACT Simulation of Ozone Impact

of a Hypothetical Landfill
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HCHO, NO,
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Drone Measurements at Landfills

* Negotiated access to 2 landfills in SE Michigan

* Two drone measurement platforms:

J Aegis IEV2 drone with BlueHalo WP-V2 UAS Weather Payload
L DJI M600 heavy-lift drone with a Scentroid DR1000 and a CH,
Tunable Diode Laser Absorption Spectrometer (TDLAS)

Gaussian plume/complex terrain inverse model




Issues to be Investigated with
Fine Scale Air Quality Modeling

* How much is NO, diluted and O; productivity enhanced
by uplift at lake breeze frontal boundaries?

 How much does flaring by steel mills and other large
industrial combustion activities contribute to HCHO
emissions and nearby community exposure to HCHO?

* Are there large, undocumented emissions of solvents
and other VCPs from point sources? What impact do
these emissions have on ozone formation downwind?

* Do large urban pipeline leaks of natural gas (CH, and
other hydrocarbons) significantly enhance the O,

i productivity of co-located VOC and NOW!






