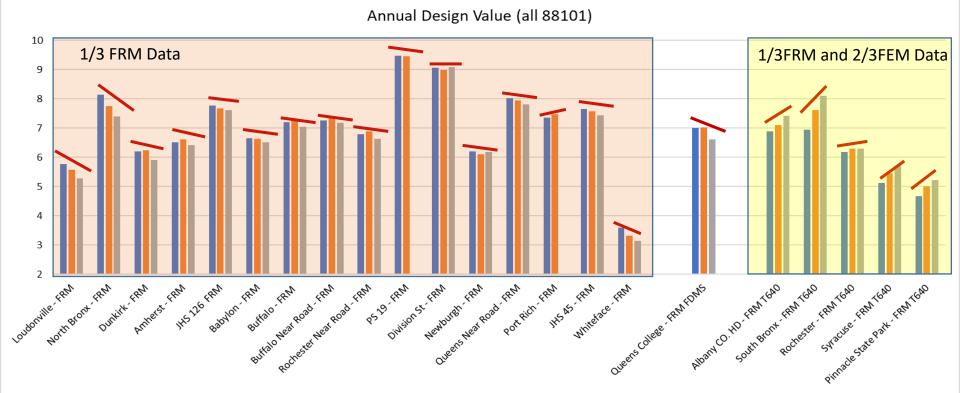


Department of Environmental Conservation


PM-2.5 FEM Data Optimization

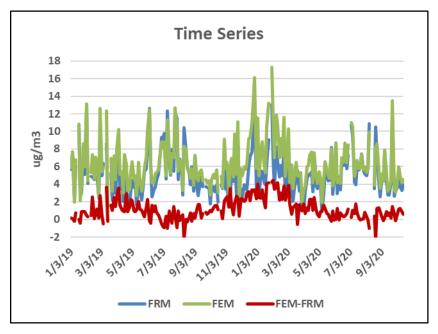
Approach to Adjust (Any and All) Class III FEM Data to more closely match Filter Based FRM Data

NACAA Monitoring Committee Meeting Dirk Felton August 19, 2021

PM-2.5 Method Issues: Ability to Detect a Trend

2018 2019 2020

Why is this Necessary?

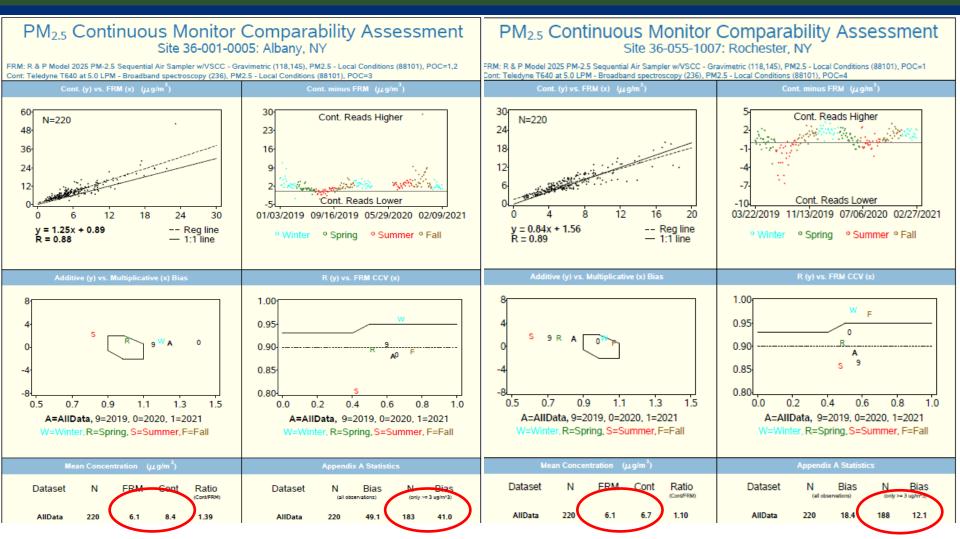

American Rescue Plan Funds – S&Ls encouraged to expand deployment of FEMs in EJ neighborhoods

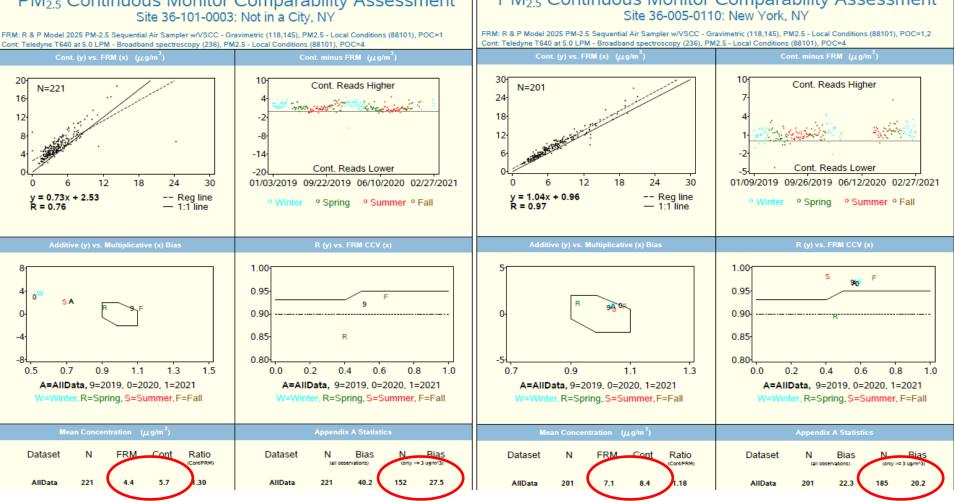
The PM-2.5 FEM Class III Equivalency criteria are too loose. FEMs run in triplicate (eliminates noise issue) FEM winter and summer bias averaged together PM-2.5 levels were higher when criteria established

Normalizing FEM data to FRM data on a MSA basis will permit seamless integration of the continuous and filter-based datasets and will eliminate concern over inaccurate attainment designations

Bias Assessment

Bias is generally seasonal due to environmental factors as well as changes in PM composition and size


FRM data are subtracted from FEM 24-Hr averages


The difference (Red Data) is the daily bias

FEMs can be biased high (> zero) or low (< zero)

Department of Environmental Conservation

PM₂₅ Continuous Monitor Comparability Assessment

Cont: Teledyne T640 at 5.0 LPM - Broadband spectroscopy (236), PM2.5 - Local Conditions (88101), POC=4

PM_{2.5} Continuous Monitor Comparability Assessment

Observations and Requirements

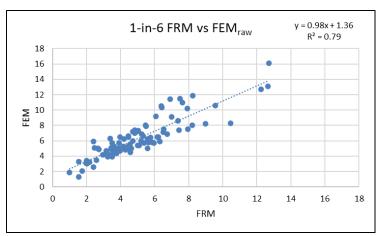
- Every FEM (vendor and model) requires a different adjustment
- Every MSA requires a different adjustment
- The adjustment must account for seasonal changes in bias
- The adjustment should utilize 1-in-6 day FRM data, otherwise, you would have two collocated NAAQS quality measurements which is not cost effective
- The adjustment should be simple, easy to explain, scientifically justified and easy to calculate
- The adjustment must produce FEM_{adj} data that result in Annual and Daily Design Values indistinguishable from FRM data

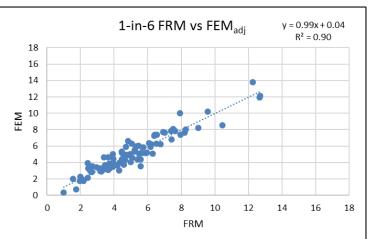
Solution

Linear Regressions are simple and account for bias

- They have to be done repeatedly to account for temporal changes in bias (1 month at a time)
- They must use enough data points to be robust and to accommodate missing values (>10 FRM:FEM data pairs)
- For 1-in-6 datasets, 3 months of paired FRM:FEM data are utilized for each month of adjusted data
- Example: To determine a Regression Equation for February, data from January through March are used. For March, data from February through April are used and so on

Procedure

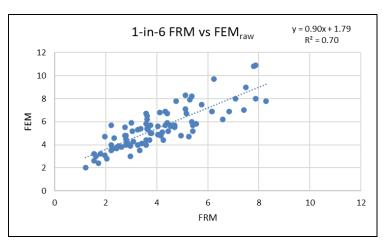

Use 3 months of data and calculate a slope and intercept

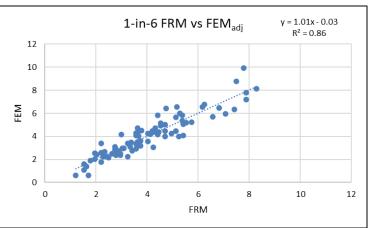

Use the slope and intercept to adjust the FEM data for each FEM value for the center month of data

 $FEM_{adj} = (FEM_{raw} - (\pm)intercept)/slope$

This equation can be applied to other like method FEMs within the MSA for the same month

The equation can be used to adjust (post process) the hourly as well as daily average FEM data

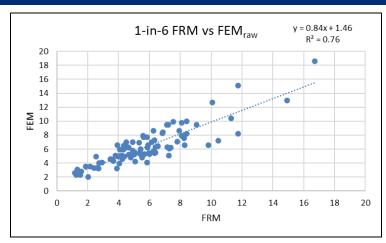


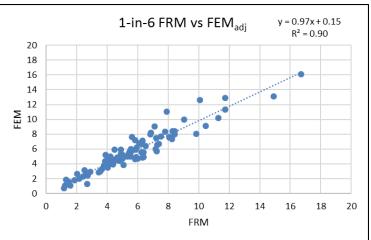

Result: Feb 2019 – Aug 2020

Syracuse, NY: Thermo 2025 & T640

The accuracy and variability are improved and the estimated DVs are comparable

PM-2.5 ug/m ³	FRM	FEM _{raw}	FEM_{Adj}
18 Month Average	5.02	6.29	5.01
18 Month 3 rd Max	12.25	12.70	12.11
18 Month Range	Slope 0.68 to 1.55	Intercept -0.57 to 2.17	R ² 0.65 to 0.96




Result: Feb 2019 – Aug 2020

Rural NCore Site: Pinnacle State Park Thermo 2025 & T640

The accuracy and variability are improved and the estimated DVs are comparable

PM-2.5 ug/m ³	FRM	FEM _{raw}	FEM_{Adj}
18 Month Average	4.04	5.43	4.04
18 Month 3 rd Max	7.88	9.70	8.76
18 Month Range	Slope 0.69 to 1.26	Intercept 0.15 to 2.19	R ² 0.70 to 0.96

Result: Feb 2019 – Aug 2020

Urban NCore Site: Rochester, NY Thermo 2025 & T640

The accuracy and variability are improved and the estimated DVs are comparable

PM-2.5 ug/m ³	FRM	FEM _{raw}	FEM_{Adj}
18 Month Average	5.72	6.28	5.69
18 Month 3 rd Max	11.75	13.00	12.86
18 Month Range	Slope 0.51 to 1.13	Intercept -0.75 to 2.55	R ² 0.71 to 0.99

Conclusions

The adjustments were determined with NY data and sites but the method can be applied to any FEM FRM dataset

The adjustments are derived from 24-Hr data but can and should be applied to 1-Hr data (not in real time)

The calculations could be performed by S&Ls or within AQS to produce FRM quality FEM data

Adjusted FEM data will simplify future health and area-wide PM studies as data from neighboring S&L air agencies will be comparable

The "CASAC" IPMRP Panel recommended this approach

Independent Recommendation

Page B-9 of the IPMRP PM review: (Former CASAC PM Panel) "There are approaches that could be implemented to make nearly all the existing FEM data of acceptable quality for comparison to the NAAQS based on data collected from co-located FRM and FEM PM-2.5 monitors over the last several years, since nearly all FEMs produce 24-hour average PM-2.5 concentrations that are wellcorrelated with FRM samples."

Next Steps

- S&L: Do not submit FEM data as 88101 if it does not meet Class III Equivalency at each site
- S&L: Use April 15, 2013 EPA Document:
 "Instructions and Template for Requesting that data from PM2.5 Continuous FEMs are not compared to the NAAQS"
 (Exclude the 4th Qtr of 2021 Next NAAQS attainment demonstration can use prior years data)
- EPA: In the next revision of the PM NAAQS, require 88101 FEM data to be adjusted to emulate local FRM data on a MSA specific basis

Thank You

- Dirk Felton
- Research Scientist
- 625 Broadway
 Albany, NY 12233-3265
- dirk.felton@dec.ny.gov
- 518-402-8508

Connect with us:

Facebook: www.facebook.com/NYSDEC Twitter: twitter.com/NYSDEC Flickr: www.flickr.com/photos/nysdec

16

