Examples of 1-Hour NO₂ and SO₂ Modeling

William O'Sullivan Director, Division of Air Quality NJDEP

June 14, 2011

1-Hour NO₂ Modeling LS Power West Deptford Station

600 MW Combined-Cycle Plant

 Natural gas with 0.05% sulfur oil backup
 Stack Heights: turbines = 64 meters emergency generator = 38.1 meters emergency fire pump = 15.2 meters

Scenarios of Interest

Normal Operations (NOx ng = 37 lb/hr) (NOx oil = 70 lb/hr)

Startup Operations (NOx = 223 lb/hr)

Emergency Equipment – generator (NOx = 10 lb/hr) and fire pump (NOx = 1.3 lb/hr)

Modeling Was More Inclusive than Current EPA Guidance

Permit Conditons to Avoid 1-Hour NAAQS Problems:

Emergency generator had to raise stack

Testing of emergency generator and fire pump not allowed during turbine startup

- Per EPA's March 1, 2011 guidance emergency generators and turbine startup may not need to be modeled.
- If they are, problems can be avoided with reasonable measures.

8th high 1-Hour NO₂ Impacts (75 % NOx to NO₂ conversion assumed)

Normal Operations (oil) = 8.1 ug/m³ Startup Operations (223 lbs/hr) = 42 ug/m³ Emergency Equipment(11.3 lbs/hr)= 43 ug/m³ Lesson : Short stacks cause big impacts! $(1-hour NO2 NAAQS = 189 ug/m^3)$

Philadelphia 0 0

o oDelaware

Salem

•Camden[•]

Burlington

Gloucester

Red Receptors -Impacts above 1-hr NO2 Significance Level during **Normal Operations**

© 2010 Google Image USDA Farm Service Agency © 2010 Europa Technologies

New Castle

ecil

37-km,

Chester

Chester

New Castle

36 km

Cecil

Gloucester

Philadelphia

Red Receptors -Impacts above 1-hr NO2 Significance Level during Startup Operations

Burlington

Image USDA Farm Service Agency

© 2010 Google Europa Technol

Salem

Existing Sources

 Did not consider impacts of existing off-site emergency generators

May require higher stacks on diesel engines near sensitive receptors (hospitals) independent of NSR

SO₂ Modeling of a 400 MW Power Plant

Power Plant Description

Size/Age

 Unit 1 – 160 MW / 1958
 Unit 2 – 240 MW / 1962

No existing emission controls for SO₂

2007 – 2010 annual average emissions of <u>29,067 tons</u>

<u>SO₂ Modeling Conducted with</u> <u>Two EPA Models</u>

1. <u>AERMOD</u> (guideline model)

- 2. <u>CALPUFF</u> (complex terrain model)
- May be applied at locations with complex local winds generated by terrain variations.
- Must conduct a model validation that shows it performs better for the given application than EPA's preferred model (AERMOD).

Summary of CALPUFF Results 3-Hour SO2 NAAQS (1300 ug/m3) no background included

Meteorological Time Period		Emissions	Days Violating NAAQS	% Over NAAQS
	2002	Allowable	17	144 %
	2002	Actual	2	54 %

PREDICTED 3-HOUR SO2 VIOLATIONS IN THE VICINITY OF THE PORTLAND GENERATING STATION

1,300 micrograms per cubic meter (ug/m³) is the secondary National Ambient Air Quality Standard (NAAQS) for protection of public welfare

Summary of CALPUFF Results 24-Hour SO2 NAAQS (365 ug/m3) no background included

Me T	eteorological Time Period	Emissions	Days Violating NAAQS	% Over NAAQS
	2002	Allowable	6	28 %
	2002	Actual (CEM data)	0	-21 %

Summary of CALPUFF Results 1-Hour SO2 NAAQS (75 ppb or 196 ug/m3) no background included

Meteorological Time Period	Emissions	Days Violating NAAQS	% Over NAAQS
2002	Allowable	39	1662 % (~ 17 x NAAQS)
2002	Actual (CEM data)	27	1019 % (~ 10 x NAAQS)

1800 ug/m^3 1700 ug/m⁴3 1600 ug/m⁴3 1500 ug/m^3 1400 ug/m^3 1300 ug/m⁴3 1200 ug/m⁴3 1100 ug/m⁴3 1000 ug/m^3 900 ug/m^3 800 ug/m^3 700 ug/m^3 600 ug/m^3 500 ug/m^3 400 ug/m^3 300 ug/m^3 200 ug/m^3

Ν

1-Hour SO2 NAAQS of 196 ug/m³ Includes no background concentrations 2003 meteorological data

Summary of AERMOD Results 1-Hour SO2 NAAQS (75 ppb or 196 ug/m3) no background included

Me T	eteorological ime Period	Emissions	Days Violating NAAQS	% Over NAAQS
	1993-94	Allowable	42	615 % (~ 6 x NAAQS)
	1993-94	Actual (avg. monthly)	5	138 % (~ 1.4 x NAAQS)

No predicted violations of the 3-hour or 24-hour NAAQS

Figure 3. AERMOD Predictions of the 99th Percentile 1-Hour Sulfur Dioxide Impacts due to Allowable Emissions from the Portland Power Plant

1-Hour SO2 NAAQS of 196 ug/m^3 Includes no background concentrations July 1993 - June 1994 meteorological data

Trajectory Analysis of High SO₂ Episodes at Area Monitors

NOAA's HYSPLIT trajectory model based on weather forecast model windfields

Chester SO₂ Monitor located <u>21 miles</u> east of Portland Power Plant

Columbia Lake Monitor located <u>1.2</u> <u>miles</u> northeast of Portland Power Plant

HYSPLIT Trajectory Analysis of Chester Monitor High SO₂ Episode

Hourly SO₂ values measured July 17, 2008; 10pm - 77 ppb, 11pm - 85 ppb, 54 ppb – midnight

 CEM Emissions data July 17, 2008,
 Portland avg. hourly SO₂ = 12,500 lbs (allowable = 14,720 lb/hr)

<u>HYSPLIT Trajectory Analysis of</u> <u>Columbia Lake Monitor High SO₂</u> <u>Episode</u>

Data collected at Columbia Lake Monitor since Sept. 23, 2010

 14 exceedances of the 1-hour SO₂ NAAQS of 75 ppb (196 ug/m³) recorded from Sept. 23, 2010 to April 17, 2011

Columbia Lake - Sept. 23, 2010 to Feb. 17, 2011

HYSPLIT Trajectory Analysis of Columbia Lake Monitor October 30, 2010 Episode

 183 ppb hourly SO₂ values measured at 8 pm was highest value monitored so far (2.5 x NAAQS)

CEM Emissions data Hours 7 and 8 pm,

Portland P.P. avg. hourly $SO_2 = 6,500$ lbs (allowable of 14,720 lbs/hr)

Martins Creek P.P. avg. hourly $SO_2 = 0$ lbs

October 30, 2010 Episode

10/30/2010 6:05:00 pm10/30/2010 7:00:00 pm

 $7:00\,\mu{m}$

Portlànd

Imagery Date: 8/29/2010

6:05 pm

1992

40 54 54

1-hr trajectory starting at 7pm

Columbia Lake WMA Monitor

<u>green line</u> at 221 meter above ground (plume height),

blue line at 100 meters above ground,

red line at 10 meters above ground.

Conclusions

SO₂ 1-Hour NAAQS is much more easily violated than the 3 and 24-Hour NAAQS

- Columbia Lake monitoring confirms both CALPUFF and AERMOD predictions of 1-hour NAAQS violation at that location
- Model Validation study showed CALPUFF performs better at this location