

Department of the Environment

Building Energy Efficiency and Renewable Energy Programs Into the Clean Air Planning Process

Taking SIP Credit for Nontraditional Programs

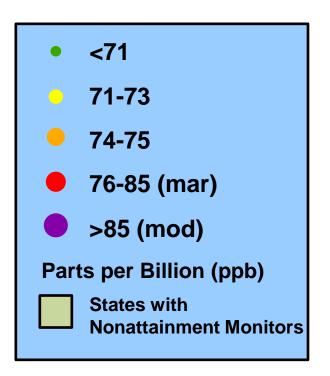
Tad Aburn - Air Director, MDE May 6, 2013 – NACAA Meeting – St. Louis, MO

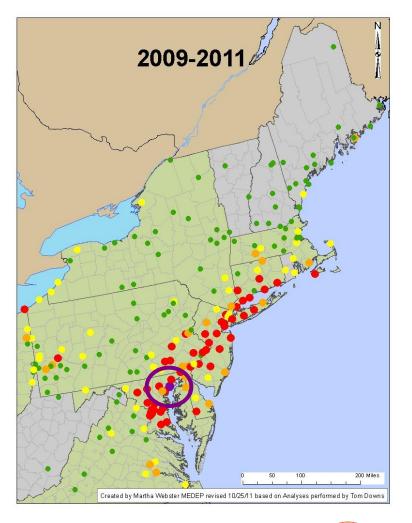
Topics

- A little background on air quality in Maryland
- The challenges in building a clean air plan
 - Also called the "SIP" or State Implementation Plan
 - The role of air pollution "transport"
 - The lack of any remaining "low hanging fruit"
- Maryland's efforts on linking our energy efficiency and renewable energy (EE/RE) initiatives and other energy programs to the air quality planning process
 - We are part of the EPA pilot
 - Focusing on the Weight-of-Evidence (WOE) pathway

Air Quality Issues in Maryland

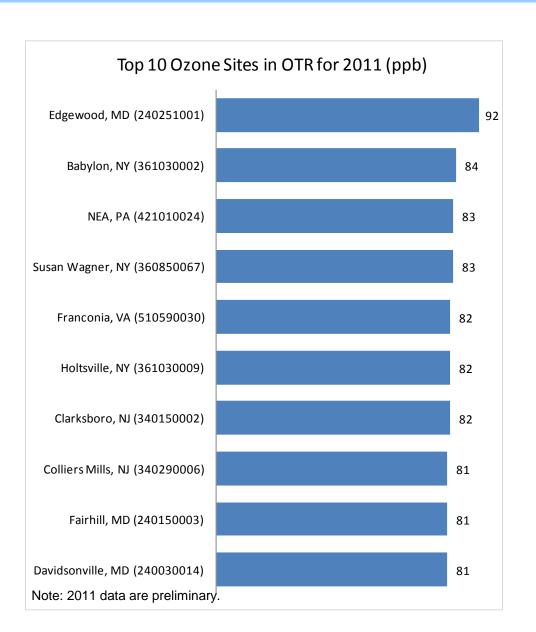
- Ground level Ozone and Transport
- Fine Particulate
- The new SO2, NO2 and lead standards
- Air quality contributions to the Chesapeake Bay
- A State required greenhouse gas SIP
- Multi-Pollutant Planning, Environmental Justice and more
- EE/RE efforts can help with all of these problems

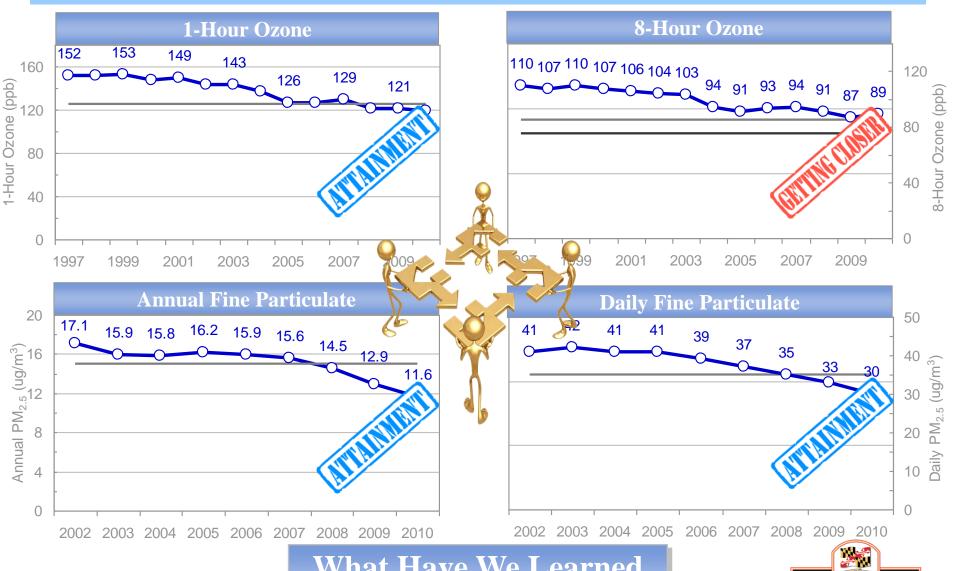




Baltimore – The Last Purple Dot

- Our biggest problem is ozone
- Still struggling with the old, 85 ppb ozone standard
- Only area in the east designated by EPA as a "moderate" nonattainment area for the 75 ppb standard




The Top 10 – or Maybe the Bottom 10 - List

Progress in Cleaning Maryland's Air

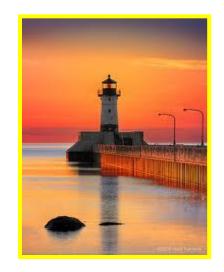
What Have We Learned from All of This?

So What Else Can MD Do?

- MDE has worked with the University of Maryland for 20+ years to study where our air pollution problem comes from
- It's not all that complicated
 - Just very, very difficult
- Two basic pieces
 - Maryland emissions
 - Emissions in upwind states
 - On many bad days sources in upwind states are responsible for 70% to 90% of our problems
 - This piece "air pollution transport" is our #1 priority

So is Maryland Still Pushing Local Controls?

- Yes For example, the Maryland Health Air Act
 - It's a \$2.6 Billion power plant control program
 - Single sources in upwind states now emit more NOx than all of MDs sources combined
- We are also a California Car State
 - Toughest car standards allowed by law
- New local rules on everything we can find
 - Cement kilns to perfume
 - Even pushing crazy nontraditional stuff
 - Voluntary programs, outreach programs, incentive programs
 - Outside-the-box transportation initiatives ... and so on
- This is where our efforts on getting EE/RE programs into our clean air planning process fit
 - It's one of the crazy nontraditional approaches we're pushing to further clean the air



Multi-Pollutant Planning

- Maryland is working on a "multi-pollutant" air quality planning process
 - We are including the benefits from our EE/RE initiatives as part of this multi-pollutant process
- Unfortunately, the laws do not drive multipollutant planning
 - They have more of a single pollutant focus
- Our approach
 - Use the single pollutant mandates but always look at the multi-pollutant benefits as you go
 - 2010 Our old ozone SIP
 - 2012 Our State driven Greenhouse Gas (GHG) Emission Reduction Act Plan
 - 2015 Our next SIP for ozone
 - 2017 and beyond New SIPs for ozone and PM

Expanded Weight-of-Evidence

- Our work to include energy program benefits is linked to how we include credit for non-traditional programs in our SIP through "expanded weightof-evidence"
- Acknowledges the inherent uncertainties in the models and analyses used to support an attainment demonstration
- Other areas being included in our WOE analyses
 - More actual data less models
 - No more "bright lines"
 - More honesty on future emissions projections
 - Credit for non-traditional programs
 - Voluntary, incentive-based, outreach, EE/RE and more

So What Have We Done?

- Driven primarily by or State 2012 GHG requirements and the 2015 ozone SIP
- We've worked with NESCAUM (Northeast States for Coordinated Air Use Management) to build an analytical framework that allows us to:
 - Quantify the emission reductions of multiple pollutants for a broad suite of energy programs
 - Model the reductions in ozone, fine particulate and other pollutants
 - Estimate the public health benefits associated with those reductions, and
 - Quantify the economic benefits and costs
- University of Maryland (air quality modeling) and Towson University (economic modeling) are also part of the team doing this work

The Programs We Have Analyzed

- At this time, we have focused on a package of our highest priority energy initiatives in Maryland
 - The Regional Greenhouse Gas Initiative (RGGI)
 - The EmPOWER Maryland program
 - The Maryland Renewable Portfolio Standards (RPS) program
 - The Maryland Clean Cars program
 - Electric vehicle initiatives
 - Smart growth initiatives
 - Green building initiatives

The Framework

Kudos to NESCAUM

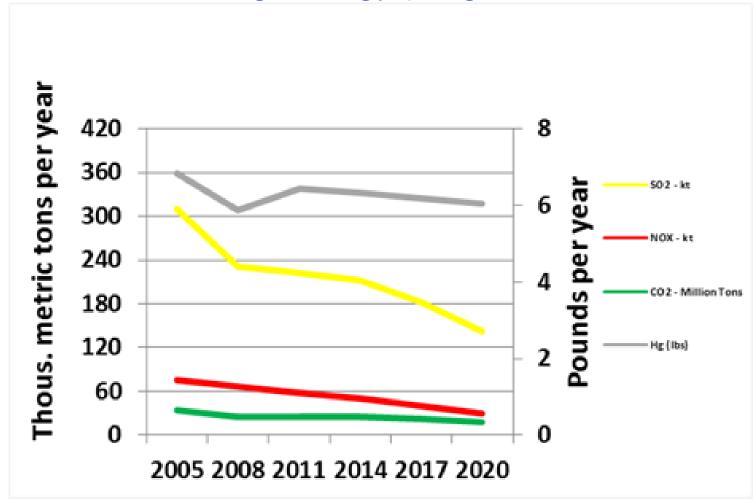
- Maryland is building off of work originated by our partners in the Northeast and New York
- The workhorse
 - NE-MARKAL model an energy model that we now use to analyze the energy implications and emission reductions from a "bundled" suite of selected energy programs

Linked models

- The photochemical "air quality" model (CMAQ)
- An economic model (REMI)
- A cost-benefit model (BenMAP)

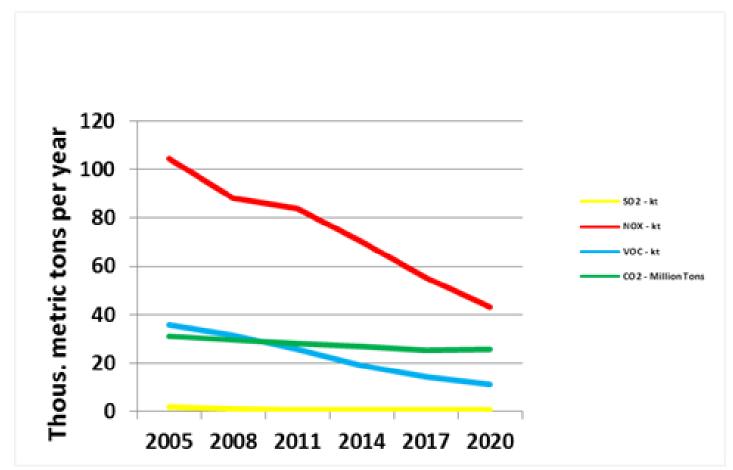
Our Current Results - A Few Examples

- Still very much a "work-inprogress"
 - Still road-testing NE-MARKAL
 - Results are really for demonstration and discussion purposes only
- Right now driven by the ozone, fine particle and mercury "cobenefits" from our GHG emission reduction efforts
- As the 2015 ozone SIP approaches, it will evolve to the energy, PM, mercury and other co-benefits from our ozone plan



Power Sector Emission Reductions

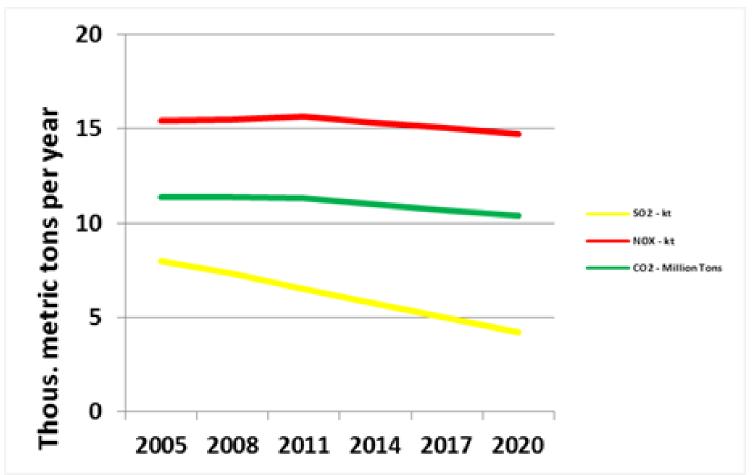
... including energy programs



Maryi

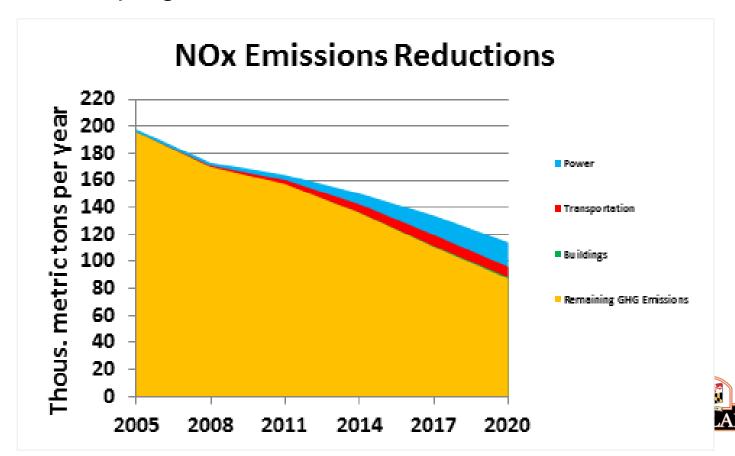
Transportation Sector Emission Reductions

... including energy programs

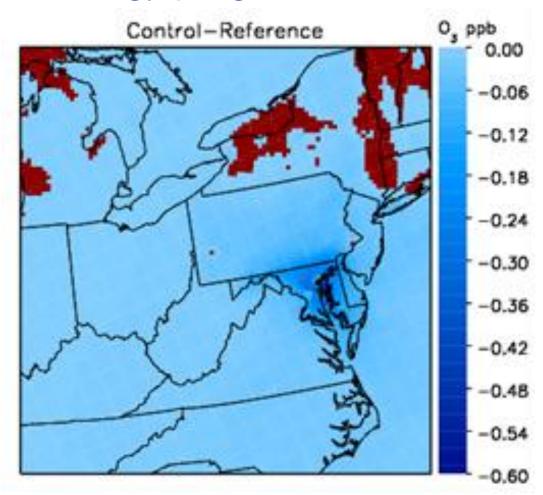


Building Sector Emission Reductions

... including energy programs

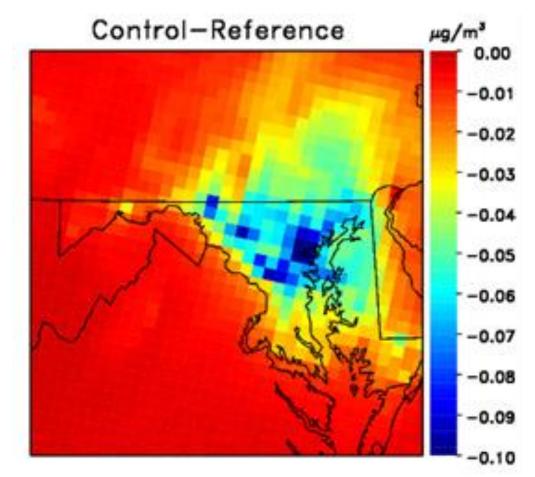


Additional Reductions from Energy Programs


- Current analyses indicates that the additional reductions from the non-traditional, "energy" programs are very meaningful
- Still a work in progress

Modeled Ozone Benefits

... from energy programs



Modeled Fine Particulate Benefits

... from energy programs

Public Health Benefits – Fine Particulate

	Incidence										Valuation (millions \$)		
State (Abbrev.)	Mortality (All Cause)	Acute Bronchitis	Acute Myocardial Infarction	Acute Respiratory Symptoms	Asthma Exacerbation	Emergency Room Visits, Respiratory	Hospital Admissions, Cardiovascular	Hospital Admissions, Respiratory	Lower Respiratory Symptoms	Upper Respiratory Symptoms	Work Loss Days	Mortality	Morbidity
СТ	0 - 1	-	-	45	4 - 25	-	-	-	1	1	7	2.0 - 6.9	0.0 - 0.1
DC	1 - 3	1	-	180	19 - 103	-	-	-	4	3	30	8.0 - 27.1	0.1 - 0.2
DE	1 - 3	1	-	138	15 - 81	-	-	-	3	3	23	6.0 - 20.1	0.1 - 0.2
MA	1 - 3	1	-	157	15 - 85	-	-	-	4	3	26	6.3 - 21.2	0.1 - 0.2
MD	21 - 71	32	0-5	4,067	431 - 2,394	2-4	1 - 2	1	102	77	687	168.4 - 568.2	1.5 - 5.0
ME	-	-	-	(19)	(10) - (2)	-	-	-	-	-	(3)	(3.3) - (1.0)	0.0
NH	-	-	-	25	3 - 14	-	-	-	1	-	4	1.0 - 3.5	0.0
NJ	5 - 17	7	0 - 1	968	100 - 557	1	0 - 1	-	23	18	162	40.3 - 136.1	0.4 - 1.3
NY	0 - 2	-	-	61	5 - 25	-	-	-	1	1	10	3.6 - 12.3	0.0 - 0.1
PA	15 - 52	19	0-5	2,391	248 - 1,377	1 - 2	1 - 2	1	58	44	401	123.2 - 415.7	1.0 - 4.1
RI	(1) - 0	-	-	(40)	(22) - (4)	-	-	-	(1)	(1)	(7)	(5.9) - (1.7)	(0.1) - 0.0
VA	3 - 10	6	0 - 1	688	74 - 409	0 - 1	-	-	17	13	116	24.2 - 81.8	0.3 - 1.0
VT	-	-	-	5	0 - 2	-	-	-	-	-	1	0.3 - 1.1	0.0

Public Health Benefits - Ozone

			Valuation (millions \$)				
			Inciden	Morbidity	(**		
State (Abbrev.)	Mortality (All Cause)	Acute Respiratory Symptoms	Emergency Room Visits, Respiratory	Hospital Admissions, Respiratory	School Loss Days	Mortality	Morbidity
СТ	-	52		-	15 - 35	0.2 - 0.3	0.0
DC	-	260	-	0 - 1	76 - 181	1.0 - 1.4	0.0
DE	-	643	-	1 - 3	201 - 479	2.5 - 3.5	0.1
MA	-	12	-	-	3 - 8	0.1	0.0
MD	3 - 5	6,853	3 - 6	3 - 20	2,107 - 5,020	24.9 - 35.1	0.6 - 0.7
ME	-	(84)	-	-	(53) - (22)	(0.6) - (0.4)	0.0
NH	-	3	-	-	1 - 3	0.0	0.0
NJ	1	1,806	1 - 2	1 - 6	542 - 1,292	7.0 - 9.9	0.2
NY	2	3,731	3 - 6	2 - 10	1,095 - 2,613	12.2 - 17.2	0.3 - 0.4
PA	2 - 3	2,939	1 - 3	2 - 13	873 - 2,083	13.8 - 19.4	0.3
RI	-	-	-	-	2 - 5	0.0	0.0
VA	1	2,151	1 - 2	2 - 9	676 - 1,613	6.7 - 9.4	0.2 - 0.3
VT	-	(16)	-	-	(10) - (4)	(0.1)	0.0

Economic Benefits

- Jobs
 - On average a net increase of 4,300 jobs per year through 2020
- Wages
 - Average increase in direct wages of \$131 million/year
 - Associated with technology transition
- Household Income
 - Average savings of \$80 per year
- Just a few examples

Lessons Learned

- The air quality benefits from energy programs can be significant
- We are in a "win-win" period
 - Enhancing EE/RE efforts is a theme across the U.S. – Build partnerships
 - Energy folks want to understand the environmental benefits
 - Air folks need all the help we can get in reducing emissions
- Looking at energy programs first may be an important piece of Multi-Pollutant Planning
- Our current work is not simple ...
 - Having EPA continue to invest in analysis tools and to "bless" approaches like our NE-MARKAL driven "linked modeling" package will be important

Next Steps

- Have already started the next phase of this work – same partners
 - Now targeting the 2015 Ozone SIP
 - Improving emission reduction estimates
 - Refining NE-MARKAL platform
 - Continued air quality, health benefit and economic modeling
 - Quantifying Chesapeake Bay benefits
 - Adding new energy efforts into the mix
 Offshore wind, updated RGGI, others
 - Increasing coordination work with State agencies (MEA, PSC, MDOT, etc.)
- Also working with EPA to evaluate this work and assess appropriate use in SIP context

Questions?

