

Chris Salmi
New Jersey Department of Environmental Protection

NACAA Membership Meeting May 6, 2013

Overview

- Some of the Challenges
- Response
- Recovery
- Rebuild
- Recommendation

http://www.state.nj.us/nj/home/features/spotlight/hurricane_sandy.shtml

Thank You!

- Emergency Responders
- USEPA Staff and Leadership
- State and Local Agencies
- Many, Many, Others

Sandy Storm Track

Some of the Challenges

- Fuel shortages
- Lack of Power
 - Many Homes
 - Many for a Week
 - Some for More Than Two Weeks
 - Community Water Systems over 400 impacted
 - Wastewater Treatment Facilities- 100 impacted
- Phone Service
- Mounds of Sand in the Shore Area
- Debris
 - On Land
 - In Water

Response

- Fuel Shortages
 - Damaged Fuel Distribution System
 - Lack of Power to Get Fuel Out of the Storage Tanks
 - Actions
 - Gasoline Waiver allowed use of conventional gasoline
 - Odd / Even Rationing
 - Emergency Generators allowed use of higher sulfur fuel
 - Emergency Equipment allowed use of higher sulfur fuel in pre-2007 engines

Restoration

- No Action Assurance 20 facilities
 - No Electricity Available
 - Air Pollution Control Equipment Damage as the result of the Storm Surge and / or the Wind
- Compliance Advisories

COMPLIANCE ADVISORY

Enforcement Alert

Making You Aware of Anticipated Enforcement Activities

Compliance and Enforcement

Issued: October 31, 2012

#2012-15

Emergency Diesel Generator Fueling Provisions Necessitated by Hurricane Sandy

• • •

Compliance and Enforcement

Issued: November 9, 2012

2012-19

Emergency Generators and Packaged Boilers Use Provisions Necessitated by Hurricane Sandy

http://www.state.nj.us/dep/enforcement/advisories-air.htm

Restoration

- No Action Assurance 20 facilities
 - Air Pollution Control Damage as the result of the Storm Surge
 - No Power
- Compliance Advisories
- Risk Assessments
 - Marine Loading Facilities
 - Operate Without Controls for Several Months
 - Sewage Sludge Incinerators
 - Increased Usage While Alternative Sludge Disposal Was Not Available

Cumulative 1-hr Benzene Impacts from Uncontrolled Gasoline Loading Compared to the 1-hour Reference Concentration of 1,300 ug/m^3

Sludge Incinerator Assessment

Table 4

Maximum Predicted Annual Cancer Risk for all HAPs

Pollutant	Maximum Annual Impact (Dorr) ^a	Maximum Annual Impact (Niro) ^b	Unit Risk Factor (µg/m3)-1	Maximum Incremental Cancer Risk (from Dorr)	Incremental Cancer Risk at nearest Sensitive	Incremental Cancer Risk (from Niro ^c)	Maximum Combined Incremental Cancer Risk	Combined Incremental Cancer Risk at nearest Sensitive
	(µg/m3)	(µg/m3)		,	Receptor			Receptor
					(from Dorr)			
Arsenic	2.0 x 10 ⁻⁴	1.82 x 10 ⁻⁴	4.3 x 10 ⁻³	8.6 x 10 ⁻⁷	4.3 x 10 ⁻⁷	7.8 x 10 ⁻⁷	1.6 x 10 ⁻⁶	5.6 x 10 ⁻⁷
Benzo (a)	7.0 x 10 ⁻⁵	4.94 x 10 ⁻⁵	1.1 x 10 ⁻³	7.7 x 10 ⁻⁸	3.3 x 10 ⁻⁸	5.4 x 10 ⁻⁸	1.3 x 10 ⁻⁷	4.4 x 10 ⁻⁸
pyrene								
Benzene	1.0 x 10 ⁻³	8.77 x 10 ⁻⁴	7.8 x 10 ⁻⁶	7.8 x 10 ⁻⁹	3.9 x 10 ⁻⁹	6.8 x 10 ⁻⁹	1.4 x 10 ⁻⁸	5.7 x 10 ⁻⁹
Beryllium	1.0 x 10 ⁻⁴	1.97 x 10 ⁻⁴	2.4×10^{-3}	2.4 x 10 ⁻⁷	1.6 x 10 ⁻⁷	4.7×10^{-7}	7.1 x 10 ⁻⁷	2.4 x 10 ⁻⁷
Cadmium	6.0 x 10 ⁻⁴	4.86 x 10 ⁻⁴	3.5 x 10 ⁻³	2.1 x 10 ⁻⁶	9.8 x 10 ⁻⁷	1.7 x 10 ⁻⁶	3.8 x 10 ⁻⁶	1.2 x 10 ⁻⁶
Chromium VI	5.0 x 10 ⁻³	2.02 x 10 ⁻⁴	1.2 x 10 ⁻²	6.0 x 10 ⁻⁷	2.3 x 10 ⁻⁷	2.4 x 10 ⁻⁶	3.0 x 10 ⁻⁶	5.9 x 10 ⁻⁷
Lead	2.0 x 10 ⁻³	5.6 x 10 ⁻³	1.2 x 10 ⁻⁵	2.4 x 10 ⁻⁸	1.2 x 10 ⁻⁸	6.7 x 10 ⁻⁸	9.1 x 10 ⁻⁸	1.3 x 10 ⁻⁸
Nickel	5.0 x 10 ⁻³	3.4 x 10 ⁻³	2.4 x 10 ⁻⁴	1.2 x 10 ⁻⁶	5.6 x 10 ⁻⁷	8.1 x 10 ⁻⁷	2.0 x 10 ⁻⁶	7.2 x 10 ⁻⁷
2,3,7,8-TC DD	2.5 x 10 ⁻⁹	1.79 x 10 ⁻⁹	3.7 x 10 ⁺¹	9.2 x 10 ⁻⁸	3.7 x 10 ⁻⁸	6.6 x 10 ⁻⁸	1.5 x 10 ⁻⁷	4.8 x 10 ⁻⁸

a Assumes the Dorr-Oliver operates 1536 hours per year.

Table 5

Dorr-Oliver Maximum Predicted Long-Term Non-Carcinogenic Inhalation Risk

Pollutant	Maximum Annual Impact (μg/m3)	Reference Concentration (µg/m3)	Hazard Quotient
Mercury	0.002	0.3	0.01
Hydrogen Chloride	0.08	20	0.004

Table 6

Dorr-Oliver Maximum Predicted Short-term Non-Carcinogenic Risk for all HAPs

Pollutant	Averaging Time	Maximum Short-term Impact (Dorr)(µg/m3)	Reference Concentration (µg/m3)	Hazard Quotient (Dorr)
Arsenic	4-hour	0.02	0.19	0.11
Benzene	6-hour	0.08	1300	6.1 x 10 ⁻⁵
Hydrogen Chloride	1-hour	14.2	2100	0.006
Lead	24-hour	0.21	0.1	2.12
Mercury	1-hour	0.52	1.8	0.29
Nickel	1-hour	1.0	6	0.18

^b Assumes the Niro incinerator operates for 8760 hours a year.

⁶ Obtained from the August 1991 summary memorandum

Restoration

- No Action Assurance 20 facilities
 - Air Pollution Control Damage as the result of the Storm Surge
 - No Power
- Compliance Advisories
- Risk Assessments
 - Marine Loading Facilities
 - Sewage Sludge Incinerators
- Odor Restart of Waste Water Treatment Plants
- Debris Management
 - Woody Waste
 - Demolition
 - Odor at Landfills Accepting Wall Board
 - Wet Debris
 - Asbestos

Rebuilding

- HUD Grant \$6 Billion
 - Delegation of Federal Determinations
 - NEPA
 - General Conformity

Recommendation

- Be Prepared
 - Identify Critical Infrastructure
 - Obtain Contact Information
 - Backup Power Generation Needs
 - Fuel Needs
 - Establish Mechanisms for Utilities to Report Restoration of Power Distribution Network

Come Visit New Jersey!

