

IGCC Process Overview and Permitting Implications for NACAA

Tampa FL. May 6, 2008

Tampa Electric Generation

 Big Bend Station 4 Coal-fired steam units (+ CT's) 	1842 Mw
 Bayside Power Station Repowered NGCC One 3 on 1 One 4 on 1 	1650 Mw
 Polk Power Station One IGCC Four peaking CT's (2007) 	920 Mw
 Phillips Power Station Two slow-speed diesels 	<u>36 Mw</u>
 Total capacity (approx.) 	4450 Mw

2007 Summer Ratings

Polk Power Station

• Unit 1 IGCC, Base load on syngas, intermediate on oil

- Combined cycle, GE 7F, 7221 GE D11, steam 192 MW 128 MW

- Dual fuel, Syngas/Distillate Oil
- DOE Clean Coal Technology co-funding \$120M
- In service 1996

• Unit 2, 3, 4 & 5 Simple Cycle CT, Peaking

- Simple cycle GE 7FA+E, 7241 150 MW each
- 2 & 3 Dual fuel, Nat gas/Distillate Oil; 4 & 5 Nat Gas only
- Unit 2 in service 2000, Unit 3 2002, Units 4 & 5 2007

Total site over 4000 acres (previously mined for phosphate)

- 750 acre cooling pond
- 80 Tampa Electric employees

Aerial View of Polk Power Station

tampaelectric.com

IGCC – Cleans the "Fuel Gas" not "Flue Gas"

Coal

In *Integrated Gasification Combined Cycle (IGCC)* plants, gasification converts low cost fuels, like coal, pet coke and biomass into synthesis gas (syngas), and heat to fuel an efficient combined cycle system.

In *pulverized coal (PC)* plants, coal is fed into a boiler, which combusts the coal, followed by post combustion pollution controls.

Boiler

Polk 1 Performance Environmental

 Polk rated the "Cleanest Coal-Fired Power Plant in North America" by the Energy Probe Research Foundation

(Total emissions from 2002 TRI data)

Low Emissions

• Typical Emissions (Lb/MMBTU)

	Polk <u>(Permit)</u>	Polk <u>(Steady State)</u>	Expected <u>New IGCC</u>
SO ₂	0.14	0.12	0.019
NO _x	0.055	0.04	0.038
Particulate	0.007	<0.004	0.007
Mercury	NA	NA	90%+ removal

(New IGCC values are basis 8,800 hhv btu/kwh net)

tampaelectric.com

Other Environmental Advantages

- Beneficial Reuse of Sulfur H_2SO_4 at Polk
- Beneficial Reuse of Slag
- Low Water Use (2/3 that of PC unit)
- Minimal solid waste (no gypsum from FGD)
- Zero Process Water Discharge

Environmental Opportunities

 Mercury - Cost-Effective Removal on IGCC using small activated carbon bed

- Testing done at Polk
- Commercially at Eastman to 95+%

 Other Volatile Metals – Will also be removed by carbon bed tampaelectric.cor

Environmental Opportunities

CO₂ removal

Solvents for sulfur removal can also remove CO₂
 For high levels of removal would "shift" syngas

 $CO + H_2O \rightarrow CO_2 + H_2$

Shift plus CO₂ removal is common for chemicals
 <u>CO₂ Storage (Sequestration)</u>

 Deep salt water zone injection – USF feasibility study

Fuel Flexibility

- Polk has operated on over 20 different fuels including: Coals Coal Blends Coal/Pet Coke Blends Coal/Coke/Biomass Blends
- Slagging gasifier requires somewhat higher fusion temps (Polk targets 2350 – 2700 F T₂₅₀ temps)
- Low rank fuels can be used in slurry fed gasifiers, but hurt efficiency
- Power block can operate on syngas or distillate oil

Renewable Fuels

Biomass Co-Utilization Tests

- Eucalyptus Biomass Test December, 2001
- Bahiagrass Biomass Test April, 2004
 (Bahiagrass Harvest and Storage Test started approximately one year prior)
- No impact on syngas quality or emissions
- Minor issues with material handling

Heat Input to CT is approx 70% of total

Graphics courtesy of GE Energy

Understanding Heat Input?

Power Engineering Magazine, March 2007

Comparing Emissions: PC, CFB and IGCC

By: Robynn Andracsek, Burns & McDonnell

Figure 1 COMPARISON OF PC, CFB AND

Figure 3 COMPARISON OF PC, CFB AND IGCC ACTUAL CO₂ EMISSIONS

tampaelectric.com

