Sleipner Vest project demonstrates first-order viability of commercial storage

Weyburn Enhanced Oil Recovery Project (An Operating Project Maximizing Oil Recovery and CO₂ Storage)

- Largest CO₂ EOR project in Canada:
 - OOIP 1.4 Bbbls
 - 155 Mbbls incremental
- Outstanding EOR response
- World's largest geological CO₂ sequestration project
 - 2.4 MMt/year (current)
 - 7 MMt to date
 - 23 MMt with EOR
 - <u>55 MMt with EOR/sequestration</u>

JAF02584.PPT 21

CO₂ from North Dakota gasification plant; 200 mi of pipe

Large projects in the US are announced from many parties in many regions

These projects are proceeding with great uncertainty

Large-scale CCS deployment is the primary challenge and source for concerns

Let's agree that by 2020, all new coal plants will be fitted for CO_2 capture and storage. The scope and scale of injection from a single plant and many plants must be considered.

One 1000 MW plant:

- 5-8 MM t CO₂/yr
- 120,000-200,000 bbl/d (as supercritical phase)
- After 60 year, 2.8-4 G bbls
- CO₂ plume radius
 - at 10y: ~10 km
 - at 50 yrs: ~30 km
- Many hundreds of wells
- Likely injection into many stacked targets

One Gt/y C abatement requires 600 projects of this size (3600 Sleipners)

Important steps: Site selection due diligence requires characterization and validation of ICE

Capacity

Injectivity

Rate of volume injection

Injectivity

Must be sustainable (months – years)

Capacity

- Bulk (integrated) property
- Total volume estimate
- Sensitive to process

Effectiveness

- Ability for a site to store CO₂
- Long beyond the lifetime of the project
- Most difficult to define or defend

Effectiveness

Measurement, monitoring, and verification (MMV) will be required, and at all stages of a project

Assessment and planning

- Site characterization
- Simulation & forward modeling
- Array design and planning

Baseline monitorinng

- · May take days to years
- May require reworking wells

Operational monitoring during injection

• Verify performance against expectations

Closeout and post-injection monitoring

- Surface & subsurface components
- May have additional tools along high-risk zones
- Recurrence and duration determined by site parameters

hore National Laboratory

NACAA may, 2008

Measurement, monitoring, and verification (MMV) will be required, and at all stages of a project

Assessment and planning

- Site characterization
- Simulation & forward modeling
- Array design and planning

Closeout and post-injection monitoring

- Surface & subsurface components
- May have additional tools along high-risk zones
- Recurrence and duration determined by site parameters

NACAA may, 2008

Many tools exist to monitor & verify CO₂ plumes

Parameter	Best tool	Other tools
Fluid composition	Direct sample	(Surface sampling + simulation)
T, P fieldwide	Thermocouples & pres. sensors	Fiberoptic Bragg grating
Subsurface pH monitoring	pH sensors	
CO ₂ distribution	Time-lapse seismic	(microseismic, tilt, VSP, electrical methods)
CO ₂ saturation	Electrical methods (ERT)	(advanced seismic)
Surface detection	Soil gas, PFC tracing	(Atmos. eddy towers, FTIRS, LIDAR, hyperspectral)
Stress/strain changes	(Tri-axial tensiometers)	Bragg grating, tilt, InSAR

~4600 m³ of CO₂ injected \sim 6300 m³ of CO₂ injected

Lawrence Livermore National Laboratory

NACAA may, 2008

29

The drive to deployment has brought focus on the lifecycle of CCS operations and its key issues

Regulatory, legal and financial frameworks are being developed now

Uncertainties persist in key aspects:

- What are proper abandonment protocols?
- When does monitoring cease?
- When does liability transfer to a new party?
- Are there unanticipated long-term concerns?
- What are the real magnitudes of these risks?

These uncertainties impede commitment of capitol to operational projects today

NACAA may, 2008

Leakage risks remain a primary concern

- 1) High atmospheric CO₂ concentrations (>15,000 ppm) can harm environment & human health
- 2) Other potential risks to groundwater, environment
- 3) Effectiveness & potential impact of widespread CO₂ injection
- **4)** Economic risks for an operator (uncertainty in subsurface, liability, and regulations)

Elements of risk can be prioritized

- Understand high-permeability conduits (wells and faults)
- Predict high-impact effects (asphyxiation, water poisoning)
- Characterize improbable, high-impact events
 (potential catastrophic cases)

Wells represent the main hazard to GCS site integrity

Plugs remain a key concern, particularly for old wells (orphaned and abandoned)

Plug technology has improved over time due to regulation

http://fotos.naturspot.de/bilder/11-336.html

1850's – 1920's

- Animal Carcasses
- Mud
- Debris
- Nothing

http://www.richardseaman.com/Travel/NewZealand/NorthIsland/Rotorua/MudPools/SunkenMudPool.jpg

1930's – 1953

- Mud
- Cement with no additives

http://www.hardwarestore.com/media/product/221101 _front200.jpg

- Standard Portland Cement
- Cement with additives

Ide et al., 2006

Work remains to develop a hazard risk framework that can be regularly employed

The hazards are a set of possible environments, mechanisms and conditions leading to failure at some substantial scale with substantial impacts

Atmospheric release hazards	Groundwater degradation hazard	Crustal deformation hazards
Well leakage	Well leakage	Well failure
Fault leakage	Fault leakage	Fault slip/leakage
Caprock leakage	Caprock leakage	Caprock failure
Pipeline/ops leakage		
		Induced seismicity
		Subsidence/tilt

Friedmann, in press

The hazards must be identified, their risks quantified, and their operational implications clarified

Lawrence Livermore National Laboratory

Because of local nature of hazards, prioritization (triage) is important for any case

Hypothetical Case: Texas Gulf of Mexico coast

Atmospheric release hazards	Groundwater degradation hazard	Crustal deformation hazards
Well leakage	Well leakage	Well failure
Fault leakage	Fault leakage	Fault slip/leakage
Caprock leakage	Caprock leakage	Caprock failure
Pipeline/ops leakage		
		Induced seismicity
Pink = highest priority Orange = high priority Yellow = moderate priority		Subsidence/tilt

Friedmann, in press

Part of protocol design is to provide a basis for this kind of local prioritization for a small number of classes/cases

Lawrence Livermore National Laboratory

The risks at present appear to be very small and manageable

Analog information abundant

- Oil-gas exploration and production
- Natural gas storage
- Acid gas disposal
- Hazardous waste programs
- Natural and engineered analogs

Operational risks

- No greater than (probably less than) oilgas equivalents (CO_2 isn't flammable)
- Long experience with tools and methodologies

Leakage risks

- Extremely small for well chosen site
- Actual fluxes likely to be small (health, safety and environmental consequences also small)
- Mitigation techniques exist Lawrence Livermore National Laboratory —

Benson, 2006

37

Crystal Geyser, UT: Analog for the worst case scenario

Drilled in 1936 to 801-m depth Abandoned well initiated CO₂ geysering

CO₂ flows from Aztec sandstone (high P&P saline aquifer)

- LLNL collected flux data (10/04)
 - Temperature
 - Meteorology (low wind <2m/s)
 - 5 eruptions over 48 hrs
 - Four eruptions and one pre-eruption event sampled

Crystal Geyser emission data results

		Eruption Interval	CO ₂ emission data during eruption	
Eruption	Eruption Character	Duration (hr:min)	Total (metr. ton)	Rate (m.t./ min)
1	moderate	0:07	1.1	0.15
2	(no observations) ^{&}	0:15	N/A	N/A
3	moderate	2:02	41	0.34
4	explosive	0:10	1.7	0.16
5a [*]	(pre-eruptive)	0:11	0.11	0.010
F	madarata	0.04	1.6	0.07

Short eruptions < 1 ton : Long eruption ~ 41 ton Daily flux: ~10-25 t (5-41 t) Annual flux: ~5000-9000 t (<1% of 1 MM t/yr injection) Never above ~12500 ppm **(up to 15000 ppm, no harm at all)**

3-D NARAC models of >100 ppm; $0.05 km^2$ **Crystal Geyser CO**₂ release set limits on >10 ppm; concentrations (i.e., $0.6 km^2$ health & safety >1 ppm; thresholds) that can $4.4 \, km^2$ guide regulation and >0.1 ppm; monitoring planning. $0.05 km^2$

NARAC simulations of the largest hypothetical leakage event suggest only localized danger

Maximum CO₂ flow rate: 7" inside diameter well

Depth	Flow rate	Flow rate
(ft)	(kg/s)	(ton/day)
5036	225	1944
4614	217	1875
5102	226	1952
4882	224	1935

~2x Sheep Mt. event ~50x Crystal Geyser Simulated hypothetical Max. flow rate event Great plains: no wind

This scenario generates maximum credible hazard

2005 Tele Atlas and/or LUNL

The toxicity consequences from catastrophic well failure appear to be highly localized.

Acute (Short-Term) Effects			
	Description	(ppm) Extent Area	Population Fatalities Casualties
	>TEEL-3: Death or irreversible health effects possible.	>40,000 71.5 m 6,840 m2	0 N/A N/A
	>TEEL-2 and TEEL-1: Serious health effects or impaired ability to take protective action.	>30,000 87.3 m 9,515 m2	0 N/A N/A

Note: Areas and counts in the table are cumulative. Casualties include both Fatal and Non-Fatal effects.

Over 100 GW of coal-fired capacity are currently on hold: just the site-specific science will be \$50-\$150M for each site

There is very little experience injecting CO₂ at this scale: confidence-building projects are required

Conclusions

• Current knowledge and experience strongly supports carbon sequestration as a successful technology to dramatically reduce CO₂ emissions.

Current science and technology gaps appear resolvable

• Deployment issues, including regulatory, legal, and operational concerns, can be addressed through development of operational protocols advised by science

• LARGE SCALE tests are crucial to understanding and guiding successful deployment of carbon capture and sequestration (CCS) and creating appropriate policy/economic structures.

No test to date is sufficient with respect to scale, duration, monitoring, and analysis.

