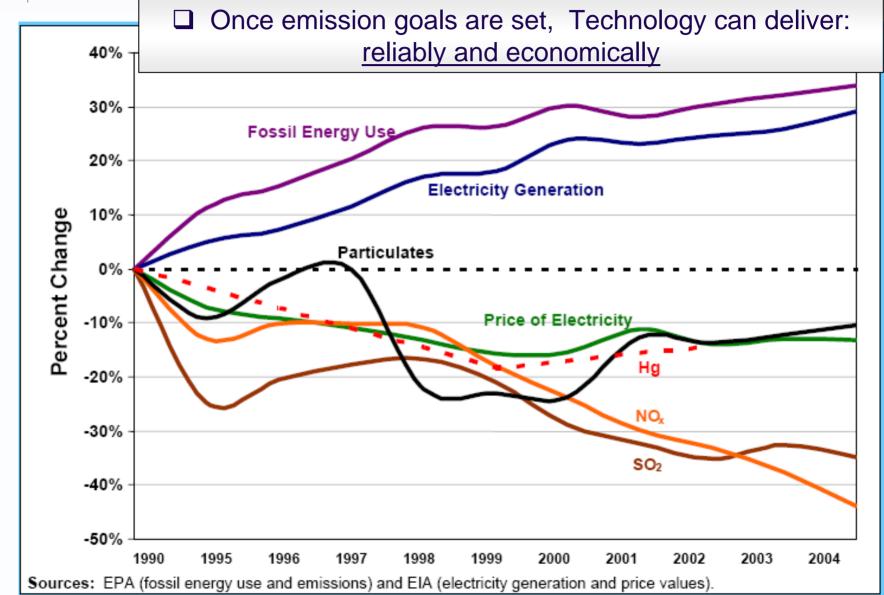


Clean Coal Combustion Competitive Solutions for Near Zero Emissions

Sean Black Environmental Control Systems

Bringing you a World of Experience in Clean Air Solutions

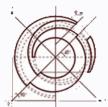


Coal Based Power Options

Emissions

NACAA Oct 2006

Advanced CFB/FDA Technology



- Successful integration of ALSTOM CFB and back-end APC technologies
- Emissions (Permit Levels):
 - SO2: 0.2 lb/MMBTU
 - > 98% removal
 - NOx: 0.10 lb/MMBTU
 - PM/PM10 : 0.015 lb/MMBTU
- Excellent fuel flexibility
- Uses low cost limestone
- Combusts wide range of fuels
 - Up to 4.5% S and 20% ash

EKPC E.A. Gilbert Station Unit 3

Sulfur Content in the Fuel: 2.5%

Inlet Gas Conditions (at ESP outlet)	English	Metric
Flue Gas Flow	~ 870,000 acfm	1,080,000 Nm³/hr
Flue Gas Temp	270°F	130°C
Particulate Matter (PM)	0.025 lb/MMBTU	30 mg/Nm ³
Outlet Gas Conditions (at stack)		
SO ₂ (>99% w/ no additives)	< 19 ppmv	< 55 mg/Nm ³
SO ₃ (~70% removal)	< 1 ppmv	< 2 mg/Nm ³
PM (>60% removal -oil soot)	< 0.01 lb/MMBTU	< 2 mg/Nm ³

> 1,800 MW in Operation/Development

When Additional Control is Needed Mercury Capture Technologies

Products:

KNX[™] Technology

□ KNX[™] coal additive

- Commercial and demonstrated
- Quoting new projects
- Powdered Activated Carbon

Mercure[™]

Technology

- Used with existing/new ESP or FF
- □ Mercure[™] Halogenated PAC

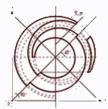
PAC

Injection

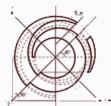
ALSTOM (Multi-pollutant) APC System

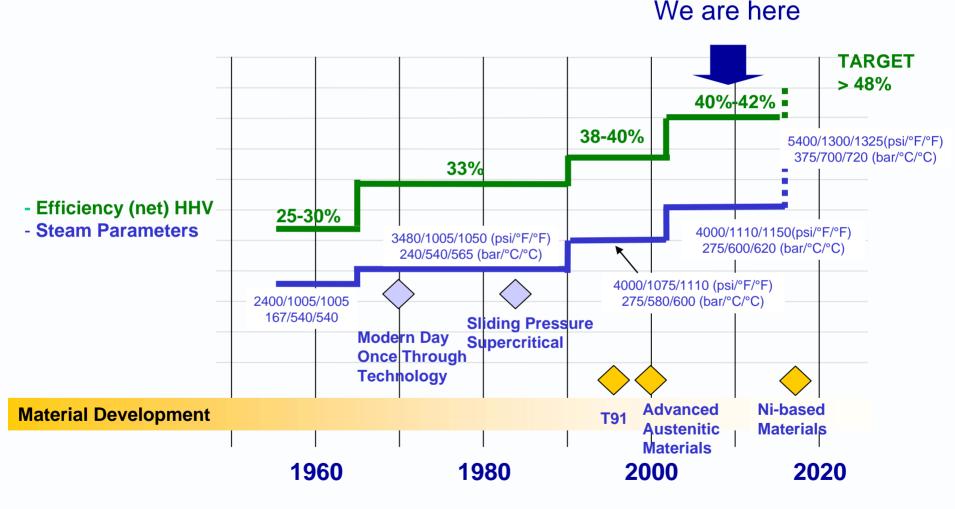
- Integrated APC system based around commercially proven and reliable technologies
- Uses readily available reagents
- Produces reusable byproduct(s)
 - No impact on fly ash
- Superior cost/performance ratio:
 - Compact design reduces capital costs
 - Less moving parts reduces maintenance costs
 - Superior environmental performance
- Targeted emissions levels:
 - SO2: 0.02 lb/MMBTU (> 99.5%)
 - Hg: 1.0 lb/TBTU (> 90%)
 - PM: 0.01 lb/MMBTU (99.99%)
 - NOx: 0.05 lb/MMBTU w/SCR

Controls SO_x, PM₁₀/PM_{2.5} Mercury & NOx


Control outlet emissions to 'near zero' levels

- Today's state-of-the-art
 - NOx >95% reduction with optimized firing systems and SCR
 - SO2 >99% capture with WFGD
 - Particulates 99.99% capture
 - Hg 80- 95% capture (coal dependent)
- Next steps
 - Continued improvements
 - Integrated Multi-pollutant systems to reduce costs
 - High Hg capture on all coals (without reliance on ACI)
 - Introduction of CO2 capture

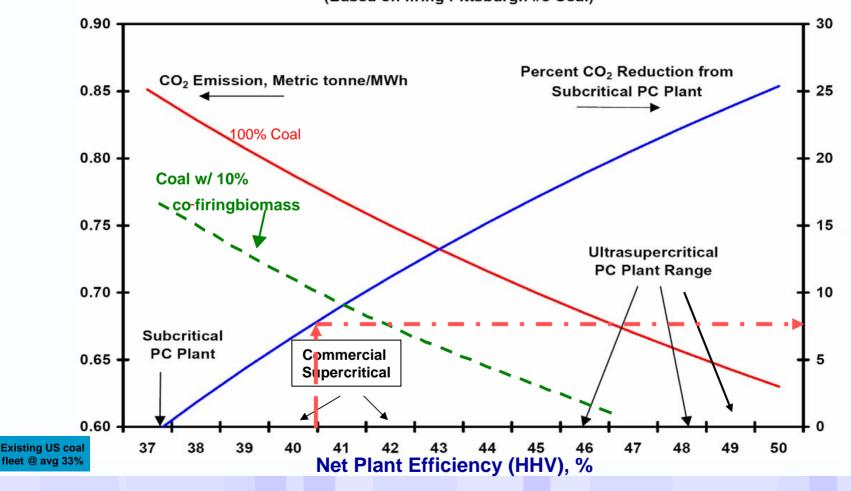

Emissions Reductions Continue


- Efficiency Achieve >48% HHV
 - Ultrasupercritical PC
 - Emphasis on advanced materials
- Co-firing of biomass
 - Partial replacement of fossil fuels in PC/CFB proportional reduction in CO2
- Post Carbon Capture Achieve >90% CO2 capture
 - Multiple options under development to achieve competitive COE for Clean Coal Combustion and IGCC with CO2 capture
- New Combustion Cycles

Maximize carbon reduction by efficiency – then capture for sequestration

Progression of Plant Efficiency via Advanced Steam Conditions and Plant Designs

Continuing Advancements = lower fuels costs and emissions

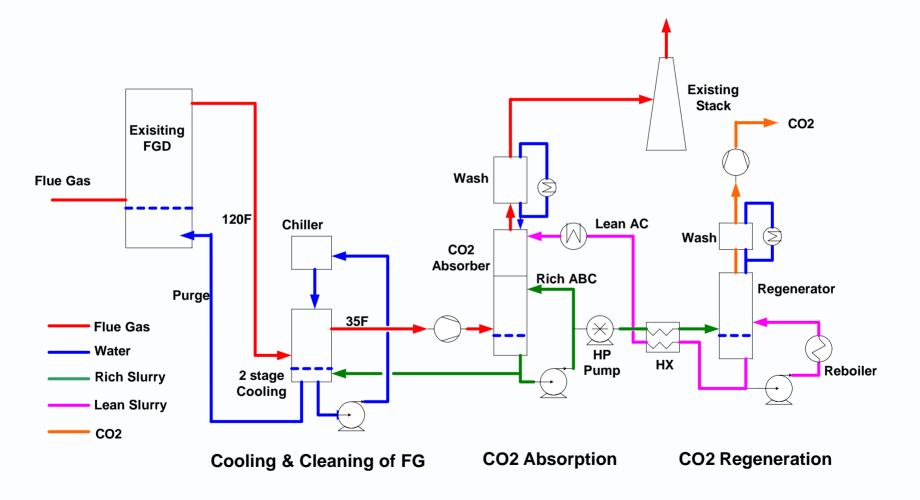

NACAA Oct 2006

Clean Coal Solutions

Source: National Coal Council Carbon Dioxide Emissions vs Net Plant Efficiency From EPRI study (Based on firing Pittsburgh #8 Coal)

Steam cycle increase from Subcritical to USC yields up to 25% emissions reduction in Ibs/Mwhr

Low Carbon Combustion Alternate Paths to CO2 Capture



Technology	Status
CO ₂ Scrubbing options – ammonia based	Demonstration in 2006. Advantage of lower costs than Amines. Applicable for retrofit & new applications
Advanced Amine Scrubbing	Further Improvements in Solvents, Thermal Integration, and Application of Membranes Technologies Focused on Reducing Cost and Power Usage – Multiple suppliers driving innovations
CO ₂ Frosting	Uses Refrigeration Principle to Capture CO ₂ from Flue Gas. Process Being Developed by Ecole de Mines de Paris, France, with ALSTOM Support
CO ₂ Wheel	Use Regenerative Air-Heater-Like Device with Solid Absorbent Material to Capture ~ 60% CO ₂ from Flue Gas. Being Developed by Toshiba, with Support from ALSTOM
CO ₂ Adsorption with Solids	Being Developed by the University of Oslo & SINTEF Materials & Chemistry (Oslo, Norway), in Cooperation with ALSTOM

Schematic of Ammonia-based CO2 Capture System

	Supercritical PC Without CO ₂ Removal	SCPC With MEA CO₂ Removal Parsons Study	SCPC With NH₃ CO₂ Removal Current Study
Coal Feed rate, lb/hr	333,542	333,542	333,542
Coal heating value, Btu/lb (HHV)	11,666	11,666	11,666
Boiler heat input, MMBtu	3,891	3,891	3,891
LP Steam extraction, lb/hr for reboiler	0	1,215,641	179,500
Steam Turbine Power, kWe	498,319	408,089	484,995
Generator loss, kWe	(7,211)	(5,835)	(7,018)
Gross plant, kWe	491,108	402,254	471,301
Plant Auxiliary Load (IDF, FGD, BFW pumps, Water pumps, Cooling Towers, CO2 unit, Chillers, CO2 compressor, BOP), kWe	(29,050)	(72,730)	(53,950)
Net Power Output	462,058	329,524	421,717
Net efficiency, % HHV	40.5	28.9	37.0
Avoided Cost, \$/ton CO2	Base	51.1	19.7

We Energies Pleasant Prairie Host Site Location for 5MW Pilot

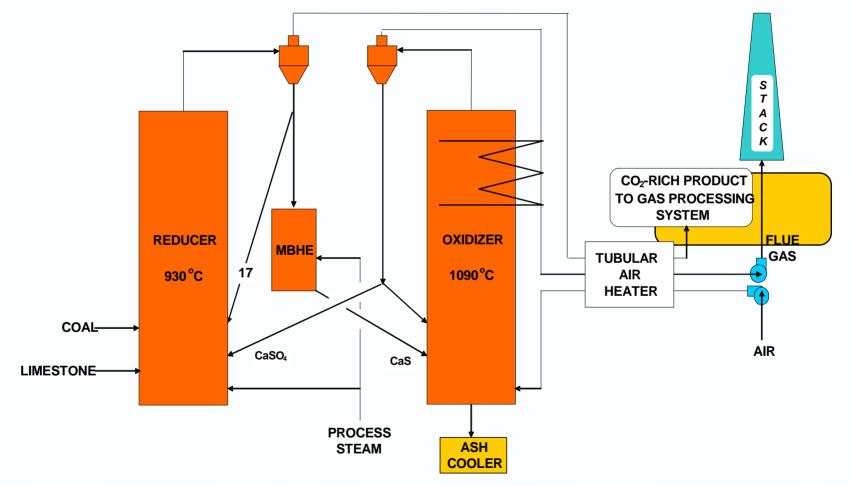
we energies 📈

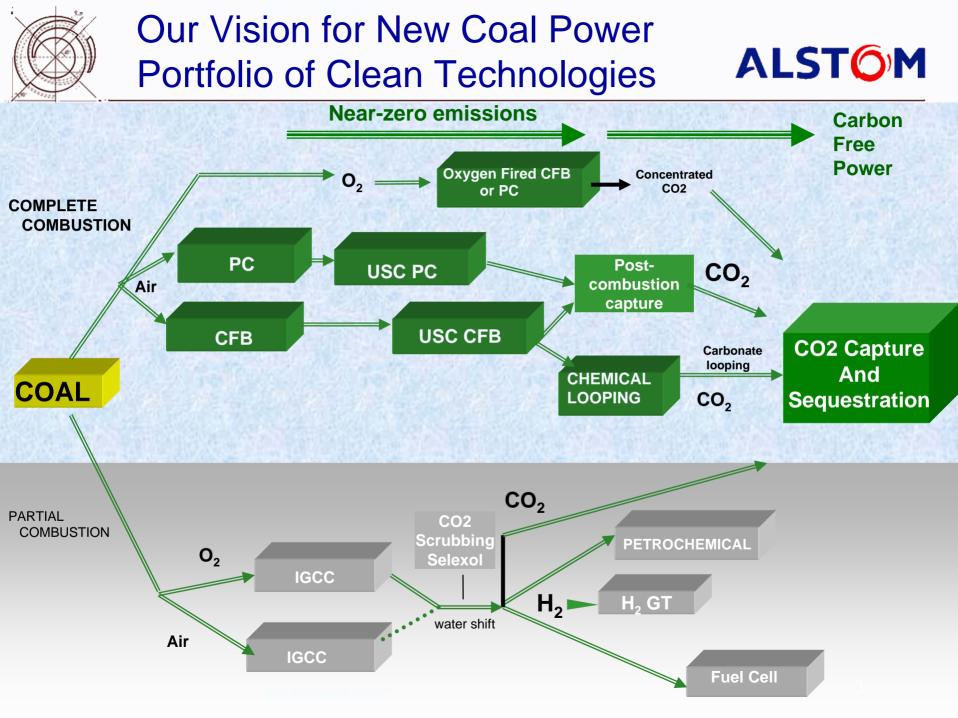
Carbon Free Power Advanced Combustion

- Advanced Combustion
 - Oxygen Firing Direct concentration of CO2 to >90% for reduced capture costs
 - Chemical Looping –Leapfrog technology with potential to achieve significantly lower costs than PC/CFB/IGCC

Innovative Combustion Options for 2010 and Beyond

Location of pilot plant in the Industrial Park Schwarze Pumpe




Chemical Looping Combustion

CaS - CaSO4 loop in CFB reactors

Calcium-based CLC process is suited to coal

www.alstom.com