

Emissions Reduction with Oxyfuel Combustion

Lee J. Rosen Manager, Combustion Applications R&D

Presented at the 2006 STAPPA/ALAPCO Fall Membership Meeting San Antonio, Texas

Ultra-low Emissions Oxyfuel Burner

By engineering the mixing process we can create:

- Low temperature
- Low emission
- Highly efficient
- Oxyfuel flames

Praxair's Dilute Oxygen Combustion Burner Combustion with no visible emissions (luminosity)

Agenda

- Common Perceptions of Oxyfuel Combustion
 - Very high temperature combustion process
 - High NOx emissions

DRAXA

- If air is free, why would/should I pay for oxygen
- Emissions Reduction with Oxyfuel Combustion
 - Yesterday Glass Furnace
 - Today Coal Fired Boilers
 - Tomorrow Onsite Mercury Sorbent Generation
 - Day-after-tomorrow Oxycoal Combustion

Flame Temperature For Natural Gas

PRAXAIR

4

Oxyfuel Burners in Lab Furnace

• Mixing is key design feature of all Praxair burners

- Dilution of fuel and/or oxygen with POC is critical
- Controlled mixing provides
 - Peak temperature control
 - NOx emissions control

Enirvonmental Related Awards

2001 Indiana Governor's Award For Pollution Prevention

- 1998 Eighth Annual National Award for Environmental Sustainability from Renew America
- 1996 DOE National Energy Award
- 1995 DOE-OIT Commercialization Award
- 1989 Kirkpatrick Chemical Achievement Award

If Air is Free.....

- Economic Benefits of Oxyfuel Combustion
- Reduced Emissions
 - NOx, Particulates, CO
 - CO2 (through energy efficiency)
- Increased Throughput
 - Improved heat flux distribution
- Fuel Savings

DRAXA

- Equipment Cost Savings
 - Smaller flue gas cleanup equipment (due to lower gas flows)
 - Elimination of regenerators and recuperators

Oxyfuel combustion typically provides multiple benefits

Emissions Reduction with Oxyfuel Combustion

Yesterday – Glass Furnaces Today – OEC for Coal Fired Boilers Tomorrow – Onsite Production of Hg Sorbents with Hot Oxygen Day After Tomorrow – Oxy-Coal Combustion

Oxy-Fuel Fired Glass Melting Furnaces

- Praxair Demonstrated the First Oxy-Fuel Fired Container Glass Furnace in 1991
- About 10,000 tpd of O₂ used today in the U.S.

PRAXAIR

- 85+ Glass Furnaces converted to Oxy-Fuel by Praxair
- Hold over 50 Patents in Glass
 Applications

- Main Benefits
 - Emissions Reduction (NOx, CO, Particulate)
 - Fuel Savings
 - Elimination of Regenerators
- About 30% of glass furnaces in the USA have been converted to oxy-fuel firing.

Reduction of Energy and Emissions

Praxair Awards for Developments in Glass Industry:

EPRAXAR

- Technology Commercialization Award DOE-OIT 1995
- National Energy Award DOE 1996
- Eighth Annual National Award for Environmental Sustainability RENEW AMERICA 1998

Economic Benefits of Oxygen Combustion for Glass Melting

Multiple Benefits:

Fuel Savings

EPRAXA

- Capital costs reduction
 - Elimination of regenerators, smaller furnace, etc.
- Production Rate Increase
- Reduction of NOx and particulates emissions
- Product quality improvement

Example: 300 TPD Container Glass Furnace

Significant net benefits of oxyfuel conversions have resulted in conversion of ~30% of all US glass furnaces

Oxygen-Enhanced Combustion (OEC) in Coal-Fired Boilers

Need:

PRAXAIR

 Cost effective NOx reduction technology for coal-fired boilers <300 MWe

Solution:

- Strategic injection of oxygen (<5% of required O2)
 - Enhances volatile yields
 - Anchors coal flame
 - Increases first stage temperature
- <u>Facilitates</u> deeper staging
 - Makes gas stage more fuel rich
 - Enhances conversion of Fuel N to N2
 - Modifies reaction kinetics to significantly reduce NOx formation
 - Reduces char yields
 - Typically reduces LOI and opacity

Developed with co-funding by DOE-NETL

PRAXAIR Commercial Experience with OEC

- OEC demonstrated from pilot to utility boiler scale
 - 3 seasons at Mt. Tom Station in Holyoke, MA (150 MW)
 - 2 seasons at P.H. Glatfelter's Spring Grove, PA facility (2 industrial boilers 200k & 275k pph steam)
- At commercial scales utilities have seen:
 - Significant NOx reductions
 - Improved flame stability
 - LOI reduced even at deeper staging
 - CO little or no change
 - Reduced flue gas volume
 - Restored generating capacity

Comparison with Prior Results

PRAXAIR

Summary – Coal NOx

- Strategic injection of small quantity of oxygen provides
 - Lower NOx emissions
 - Improved flame stability
 - Little or no impact on LOI from basecase
- System characteristics
 - Very robust

DRAXA

- Operators very comfortable with system
- Rapid installation (order to start-up in as little as 6 months)
- Possible to install without unit outage
- NOx emissions reductions are similar across scales
 - Allows good prediction of benefits before starting project

PRAXAIR Onsite Production of Mercury Sorbents

- Powder Activated Carbon (PAC) effective flue gas mercury sorbent
 - Doped varieties used in PRB flue gas
 - Suitable for in-flight and filter configurations
 - PAC currently produced off-site and shipped to plant location
- Mercury sorbents have direct and indirect impact on economics
 - Cost of sorbent
 - Sorbent can negatively impact ash characteristics for cement replacement
- Praxair has developed a process to produce PAC onsite from customer's own coal

PRAXAIR Sorbent Production with Hot Oxygen

- Fraction of O₂ burned to heat O₂ stream
- High velocity, hot gas mixes with coal and additives
- Coal particles are rapidly devolatilized
- Doped activated carbon product is formed

PRAXAIR Integration of Sorbent System with Boiler

Simple, flexible, automated process

Successful Product Optimization

Mercury Capture

PRAXAIR

Performance vs. Coal Type

Expect improved performance from lignite and bituminous coals after further optimization

Cement Compatibility and Stability

- Promising results indicated for cement compatibility
 - Process underway as part of DoE co-funded program
 - Acceptable limit for foaming index is 25
 - Foaming index tests of approx 15 to 35 have been achieved (ref. 80 – 100 for Norit FGD, 35 for Darco Hg-LH)
 - Optimization work underway

DRAXA

- Product does not have degradation after storage
 - Sample from same batch tested twice (six months apart) at Xcel's Comanche station
 - No special storage techniques employed
 - No difference in mercury capture between two samples

Summary – Mercury Sorbent

- Extremely flexible oxygen-based process
 - Suitable for use with multiple coal types
 - Optimized material provides excellent capture
 - Capable of providing local or regional sorbent production
- No product degradation during storage
- Process technology to minimize impact on ash compatibility with cement
 - Preliminary results are promising
- Cost to remove is 40% less than estimates of current commercially available doped PAC

Oxy-PC Firing of Existing Boilers with FGR for Retrofit Applications

- 30 MW demo projects announced
 - Vattenfall 30 MWt pilot (Germany)
 - CS Energy 30 MWe unit (Australia Japan/Australia)
- ASU Challenges
 - For boiler with ~10,000 Btu/MWe ASU consumes ~17% of power output

N2 off gas

PRAX

PRAXAIR

Direct Oxy-PC Fired Utility Boiler Design Options for New Installation

- No fundamental technical barriers to use direct oxypc firing without FGR
 - Heat flux can be controlled by burner/boiler design
 - Tube surface temperatures can be maintained at the same levels as the current designs, if desired.
- There are many design options and opportunities to optimize the boiler design specific to direct oxy-pc firing.
 - Radiant superheaters
 - Separately fired superheater furnace (e.g., Albany Reseach/Jupitor)
- Path forward
 - Fundamental oxy-coal combustion studies are needed to develop future generation advanced oxy-coal fuel fired boilers
 - For new direct oxy-fuel fired boilers many design innovations appear possible and need further evaluation and development.

Summary

- Oxyfuel Combustion is a multi-benefit technology
- Benefits typically include:
 - Reduced emissions (NOx, CO, Particulates, CO₂)
 - Increased throughput
 - Improved fuel efficiency
 - Reduced capital

EPRAXAR

- Although "air is free" the benefits of O₂ often outweigh the cost
- Oxygen can be the most cost effective solution for achieving environmental compliance without sacrificing plant performance
- Praxair continues to expand into markets that can benefit from oxygen but may not be familiar with its use/handling