Outdoor Woodburning Furnaces/Boilers

Northeast States for Coordinated Air Use Managament (NESCAUM) Represented by Robert Waterfall of NYS Dept of Env. Conservation

Unique OWB issues

- Good idea but bad implementation
 - Design Parameters
 - four-season utility, "8760" hours/year for hot water
 - 100,000 to 3,200,000 max. btu/hr output (500,000 btu unit most common)
 - Primitive combustion design oxygen-starved, smoldering fires, low temp burns
 - Short stack height, generally <12 ft, results in poor dispersion
 - Generally no air pollution control devices or low emission design
 - Testing of efficiency shows rates of 28-55%, which does not include pipeline losses
 - Fuel use
 - Large firebox can hold almost anything (average 60 ft³)
 - Enforcement programs identified residents burning tires, garbage, landscape waste, and railroad ties

Scope of the problem

- NSPS not applicable
 - exempt from wood stove regulations (Subpart AAA)
 - EPA does not intend to develop federal regs at this time
- Limited emissions data, no protocol or accepted test method
 - ASTM working on draft test method that may be final by April 2007
 - NESCAUM believes existing PM test methods may be applicable.
- Installation of OWBs is growing significantly.

Findings of NESCAUM Report

- Estimates in 2005, approximately 155,000 226,000 units nationwide
- 68% of units put in place in the last 3 years
- Mfgs anticipated 200-350% growth in sales in 2005 and 128% in 2004
- Estimate that 500,000 units could be in place by 2010.
- Estimate that OWBs emitted over 233,000 tons of fine PM in 2005
- Left unchecked believe PM emissions could reach over 850,000 tons annually by 2010.
- Mfgs estimate that 50% of units replacing indoor units
- Sales concentrated in nineteen states (CT, IN, IL, IA, KY, ME, MA, MI, MN, MO, NH, NY, NC, OH, PA, VT, VA, WV and WI)
- Full report can be found at www.nescaum.org

So how bad are they... Comparing Particulate Emissions based on g/hr

Emissions from OWB's Near Field Ambient Monitoring

- Few if any assessments of OWB in-field ambient emissions have been conducted
- March 2005, NESCAUM conducted exploratory field monitoring of ambient PM2.5
 - to assess the potential for elevated exposures within 50-150 ft of an OWB emissions source
 - Continuous sampling (15-second average intervals)
 - DataRAM (portable nephelometer)

P Johnson 2005 Upstate NY

Ambient Monitoring Findings

- Recorded periodic PM2.5 values $>1,000 \mu g/m3$
- Frequent values $>400 \ \mu g/m3$
- Elevated levels were found at all sampled distances
 Values > 4,000 µg/m3 recorded over distances of 50, 100, and 150 ft.
- Max. value of $8,880 \ \mu g/m3$ observed at 50 ft.
- Results indicate residences located near OWBs can experience elevated ground-level concentrations of PM2.5 dominated by submicron aerosols.

Continuous field measurements of PM2.5 in proximity to an OWB during air intake and starved operating modes about 25 hr after fuel loading.¹¹

NESCAUM Emission Characterization Field Stack Test

- First known <u>field</u> stack test of an OWB
- Conducted in June 2005
 - two test methods
 - in-stack filter and continuous monitor (DataRAM)
- 250,000 Btu/hr Unit
 - space heat, domestic hot water and swimming pool

Comparison of Filter and Continuous Monitoring Data

^{11:50} to 13:42

NESCAUM Emission Characterization Field Test

- Findings
 - DataRam
 - mean DataRAM PM emission rate during middle range burn was 161 g/h. Obtained over a 3.5 hour period and include both high and low fire modes. This average does not include worst emission rates from initial charge and cycles.
 - Filter
 - Caution On Comparisons Filter data from full fire samples likely to be biased low by a large factor due to loss of condensable PM from the hot filter.
 - Mean full fire PM emission rate was 93 g/h with a range of 13 to 237 g/h.
 - Mean idle fire PM emission rate was 64 g/h with a range of 13 to 148 g/h.

Enforcement Issues

- Existing Opacity Regulations do not usually result in resolution
- States with zoning regulations (e.g., setback requirements) still have significant issues and enforcement has been resource intensive.
- Usually resolution has only been through private party nuisance suits.

The Future

- Vermont proposed emission standard and is likely to finalize this year
- NYS legislature introduced bill in March 2006 to set emission standards
- Environment Canada investigating regulations
- Other States investigating regulatory development
- NESCAUM workgroup participating in the development of an ASTM test method
- NESCAUM developing model regulation

NESCAUM Contacts

OWB Lead

Lisa Rector 802-899-5306 Irector@nescaum.org

Testing and Monitoring

George Allen 617-259-2035 gallen@nescaum.org

Public Health/Air Toxics

Phil Johnson 617-259-2075 pjohnson@nescaum.org

<u>Website</u>

www.nescaum.org

NYSDEC Contact

Robert Waterfall

518-402-8403

rxwaterf@gw.dec.state.ny.us